Technical Data Reducers Small-Size Gear Motor Selection
Technical Data to Use in Model Selection
1. Service factors
The values for output shaft capacity torque on the specification charts have been calculated based on a service factor of 1.0.
Keeping in mind the operating hours, operating conditions, and load conditions, select a service factor (CF) from the table on the right to calculate the corrected output shaft torque.
Table 1. Service factors :(CF)
Operating hours | 10 hours or less/day | 10 hours or more/day | |
---|---|---|---|
Operation type | Intermittent/continuous | Intermittent/continuous | |
Load condition | Uniform load without shocks | 1 | 1 |
Load with light shocks | 1 | 1.2 |
Note) For loads with medium or large shocks, please contact Tsubaki.
2. Inertia ratio and allowable starting frequency
During start-up, impact torque occurs due to load inertia (also during stopping, for brake-equipped models), and an accident may occur due to the coupling method of the load and the load inertia size. Confirm using the following procedure according to the coupling method of the load and the load inertia.
- (1)Calculate moment of inertia (I) of load {load inertia (GD2)}
- (2)Calculate moment of inertia (IL) of load for motor shaft conversion {load inertia (GDL2)}
- (3)Calculate the inertia ratio (U) of the compact gear motor.
U = IL IM
U = GDL2 GDM2
In{GDM2}:Moment of inertia of the motor shaft of the gear motor {Motor shaft-equivalent inertia }
- (4)Confirm that the allowable starting frequency is satisfied by referring to Tables 1 and 2.
Table 2. Croise motor inertia ratio and allowable starting frequency
Load characteristics | Inertia ratio :U | Allowable start-up frequency times |
---|---|---|
Without backlash | 1 0.5 0.2 or less |
4 times/hr., 4 times/min., 10 times/min. |
With backlash, such as a chain | 0.5 0.3 0.2 or less |
4 times/hr., 4 times/min., 10 times/min. |
Note) For conditions other than in Table 2 above, please contact Tsubaki.
Table 3. GEAR MOTOR, HYPOID MOTOR :Inertia ratio and allowable starting frequency

Inertia ratio = Moment of inertia of load on motor shaft Hypoid motor/gear motor moment of inertia on motor shaft
3. Overhang load of the output shaft
When attaching the sprocket, gear, or belt to the output center shaft, or to the hollow shaft using a case tap, confirm that the overhang load acting on the output shaft is equal to or lower than the allowable O.H.L. of the gear motor.
When using a high-strength toothed belt, do not use the O.H.L. factor shown in Table 4, but take into account the mounting tension in calculating the O.H.L.
Table 4. O.H.L. factors f
Chain | Gear, toothed belt | V-Belt |
---|---|---|
1.0 | 1.25 | 1.5 |
Formula 1 . Point of action factor :Lf
ℓ/Q | 0.25 | 0.38 | 0.5 | 0.75 | 1 |
---|---|---|---|---|---|
Lf | 0.8 | 0.9 | 1 | 1.5 | 2 |
Solid shaft | Hollow shaft (Note ) |
---|---|
![]() |
![]() |
Note) Q of hollow shaft: Refer to Table 5 below for standard length.
Table 5. Standard length :Q
Hypoid Motor
Model No. | Reduction ratio | Q |
---|---|---|
HMMT40H | 5 ~ 240 | 28 |
HMMS40H | 5 ~ 240 | |
HMMT60H | 5 ~ 240 | 36 |
HMMS60H | 5 ~ 240 | |
HMMT90H | 5 ~ 240 | |
HMMS90H | 5 ~ 240 | |
HMAT010-20H | 5 ~ 120 | |
HMTA020-20H | 5 ~ 60 | |
HMTA010-30H | 160 ~ 200 | |
HMTA010-30H | 300 ~ 480 | 42 |
HMTA020-30H | 80 ~ 200 | |
HMTA040-30H | 5 ~ 50 | |
HMTA010-35H | 600 ~ 1200 | 58 |
HMTA020-35H | 300 ~ 480 | |
HMTA040-35H | 60 ~ 200 | |
HMTR075-35H | 5 ~ 50 | |
HMTA020-45H | 600 ~ 1200 | 66 |
HMTA040-45H | 300 ~ 480 | |
HMTR075-45H | 60 ~ 200 | |
HMTR150-45H | 5 ~ 80 | |
HMTR220-45H | 5 ~ 60 | |
HMTA040-55H | 600 ~ 1200 | 82 |
HMTR075-55H | 300 ~ 480 | |
HMTR150-55H | 100 ~ 200 | |
HMTR220-55H | 80 ~ 120 | |
HMTR370-55H | 5 ~ 60 | |
HMTR550-55H | 5 ~ 40 |
Croise Motor
Model No. | Reduction ratio | Q |
---|---|---|
CSMA010-130H | 10 ~ 60 | 20 |
CSMA020-130H | 10 ~ 60 | |
HCMA010-16*H | 40 ~ 200 | 25 |
HCMA020-16*H | 40 ~ 75 | |
CSMA040-160H | 10 ~ 30 | |
CSMA055-160H | 10 ~ 30 | |
HCMA010-22*H | 240 ~ 300 | 30 |
HCMA020-22*H | 90 ~ 200 | |
HCMA040-22*H | 40 ~ 75 | |
HCMA055-22*H | 40 ~ 50 | |
CSMA040-220H | 40 ~ 60 | |
CSMA055-220H | 40 ~ 60 | |
CSMR075-220H | 10 ~ 30 | |
HCMA020-28*H | 240 ~ 300 | 40 |
HCMA040-28*H | 90 ~ 200 | |
HCMA055-28*H | 60 ~ 150 | |
HCMR075-28*H | 40 ~ 75 | |
CSMR075-280H | 40 ~ 60 | |
CSMR150-280H | 10 ~ 30 | |
HCMA040-32*H | 240 ~ 300 | 50 |
HCMA055-32*H | 180 ~ 200 | |
HCMR075-32*H | 90 ~ 150 | |
HCMR150-32*H | 40 ~ 50 | |
CSMR150-32*H | 40 ~ 60 | |
CSMR220-32*H | 10 ~ 40 | |
HCMA055-40*H | 240 ~ 300 | 55 |
HCMR075-40*H | 180 ~ 200 | |
HCMR150-40*H | 60 ~ 120 | |
HCMR220-40*H | 40 ~ 75 | |
CSMR220-40*H | 50 ~ 60 | |
CSMR370-40*H | 10 ~ 30 | |
HCMR075-50*H | 240 ~ 300 | 70 |
HCMR150-50*H | 150 ~ 300 | |
HCMR220-50*H | 90 ~ 300 | |
CSMR370-50*H | 40 ~ 60 |