Sizing  Linipower Jack

  • ・Select an appropriate model for your application.
  • ・Enter the sizing conditions and then click the [Show selection] button at the bottom of the screen.
  • ・This is the calculation software for the selection of a Jack.
    Please refer following steps for the selection of multiple units.[STEP1. Selecting Your Linipower Jack 2. Load per jack]

Entering your selection criteria

・Please use “.” for the decimal point and not “,” as the calculation error will occur.

Enter the sizing conditions.

Lift load (Maximum ) W0 =  [kN]  [kgf]

Table 1 Service factor  sf

Load characteristics Usage examples Service factor
Smooth operation without impact
Load inertia  Low
Opening/closing a valve
Conveyor switching device
1.0~1.3
Operation with light impact
Load inertia  Medium
Transfer systems
Lifter operations
1.3~1.5
Operation with large impact/vibration
Load inertia  High
Object conveyance using trolleys; Positioning retention in rolling machines 1.5~3.0

Note) This table represents general guidelines. Determine the usage factor based on actual usage conditions.

Lift load (Minimum ) W1 =  [kN]  [kgf]
Service factor Sf =
Allowable buckling load W2 =  [kN]  [kgf]
Preferred lift speed V' =  [m/min]  [mm/s]
Stroke ST0 =  [mm]
Actual stroke ST =  [mm]
Frequency of operation [Reciprocations /Hr]× [Hr/ day ]× [ day / year ]

Selecting the Linipower Jack specifications

Select the specifications of the Linipower Jack.

[Show the reference number system. ]

JW M 050 U S H 10 U

Series
Linipower Jack














Basic Capacity
002:1.96kN{0.2tf}
005:4.90kN{0.5tf}
010:9.80kN{1tf}
025:24.5kN{2.5tf}
050:49.0kN{5tf}
100:98.0kN{10tf}
150:147kN{15tf}
200:196kN{20tf}
300:294kN{30tf}
500:490kN{50tf}
750:735kN{75tf}
1000:980kN{100tf}





















Worm Gear
Reduction Ratio

L、H
 Refer to the detailed information
for the reduction ratio.

Nominal Stroke
1:100mm
2:200mm
3:300mm
4:400mm
5:500mm
6:600mm
8:800mm
10:1000mm
12:1200mm
15:1500mm
20:2000mm

Flange mounting direction
※Indicate only for models with a travel nut.
Screw Specification
S:Basic model
M:Rotation Prevention
R:Travel Nut Type


Screw type
M:Trapezoidal Screw
B:Ball screw
H:High Lead Ball Screw
Mounting style
U:For lifting
D:For suspending
Note) Anti-rotation type (Screw spec. M) for
high lead ball screw type (Screw type: H) is
made to order.
Please inform us of the conditions of use.
Screw type Basic Capacity Screw Specification ・Mounting style Worm Gear Reduction Ratio Flange mounting direction End fitting Bellows Clevis mounting adapter
・Sensor options ・Input options
Counter LS Internal LS Potentiometer Encoder Motor

Jack model No.  

Basic Capacity [kN] Total Efficiency  ηJ
Screw Root Dia.  d [mm] Maximum Allowable Input Capacity [kW]
Screw lead  L [m] Allowable free wheeling torque without load  T0 [N・m]
Worm Reduction Ratio  R Allowable Torque on Input Shaft [N・m]

Show selection :


Checking the actual speed

Enter the motor speed and the actual total reduction ratio.

Motor speed Nm =  [r/min]
Required input speed N' = V'/L×R =  [r/min]
Required reduction ratio i' = Nm/N' =
Reference motor rotational speed
50Hz 1500 r/min
60Hz 1800 r/min
Actual total reduction ratio i = (Enter the total reduction ratio from the jack input shaft to the drive motor. )
Actual lifting speed V = Nm×L/(i×R) =  [m/min]
 [mm/s]

Specifications

Required torque on input shaft T = W0×Sf×1000×L/(2π×R×ηJ)+T0 = [N・m]
Required reverse torque (Reference ) T' = W0×Sf×1000×L×ηJ/(2π×R)-T0 = [N・m]
Input speed N = V/L×R = [r/min]
Required input capacity P = T×N/9550 = [kW]
Moment of Inertia on Input Shaft IJ = W0×1000/g×{L/(2π×R)}2 = [kg・m2]

Show selection :


Buckling Strength Check

Select the installation conditions.

Installation state
Support coefficient m =
Distance between points of load L1 =  [mm]
Buckling strength PCR = m×(d2/L1)2/1000 =  [kN]
Buckling safety rate SF = PCR/(W2×Sf) =  (>=4)

Installation state  [Click to enlarge ]

Fixed base -Free shaft end

Both ends with clevis

Fixed base -Fixed shaft end

Standard distance Stroke Fitting size Clevis size

Show selection :


Checking the allowable screw shaft speed (Travel nut only )

Support coefficient n =
Distance between points of load L2 =  [mm]
Allowable screw shaft speed NC = 96×n×d×106/L22 =  [r/min]
Screw shaft speed NS = N/R =  [r/min] (NC >= NS)

Show selection :


Checking the use frequency

Operating hours ts = ST/(V×1000) =  [min] 
Percentage duty cycle (%ED) %ED = [Reciprocations /Hr]×2×Operating hours ×100/60 =  [%ED] 

Show selection :

Calculation of Expected Life (Trapezoidal screw type )

Annual travel distance Ly = ST×2×[Reciprocations /Hr]×[Hr/ day ]×[ day / year ]×10-6 =  [km]
Expected life Z = (JWM050 or less :5km, JWM100 or more :1km)/Ly =  [ year ]

Calculation of Expected Life (Ball screw type )

Equivalent load PE = (W0×Sf×2+W1)/3 =  [kN]
Ball screw load capacity C =  [kN]
Short stroke correction factor fs =
Operating condition factor fd =
Quenching hardness correction factor fh =
Life correction factor f1 = (PE×fd)/(C×fh×fs) =
B10Lifetime travel distance L10 = 250/f13 =  [km]
Annual travel distance Ly = ST×2×[Reciprocations /Hr]×[Hr/ day ]×[ day / year ]×10-6 =  [km]
Expected life Z = L10/Ly =  [ year ]

Calculation of Expected Life (High lead ball screw type )

Contact us for the calculation of expected life limit for High-Lead Type.

Selection results

Model No.

Required input capacity

[kW]

Reduction ratio

<Notes >
This selection is based on the theoretical calculation value, and we do not guarantee the selecting results. Please well understand the formula of this selection and give the leeway to the calculation result, and make the final decision of product used on