

TSUBAKI EMERSON

Overload protection and control devices

Safety devices for protecting machinery from potentially damaging mechanical and electrical overload. Both mechanical and electrical types are available.

From safety mechanisms like Torque Limiters, Torque Guards and Shock Relays, to controlling devices like Torque Keepers and Shock Monitors, SAFCON provides your vital machinery with top-notch safety and control.

91

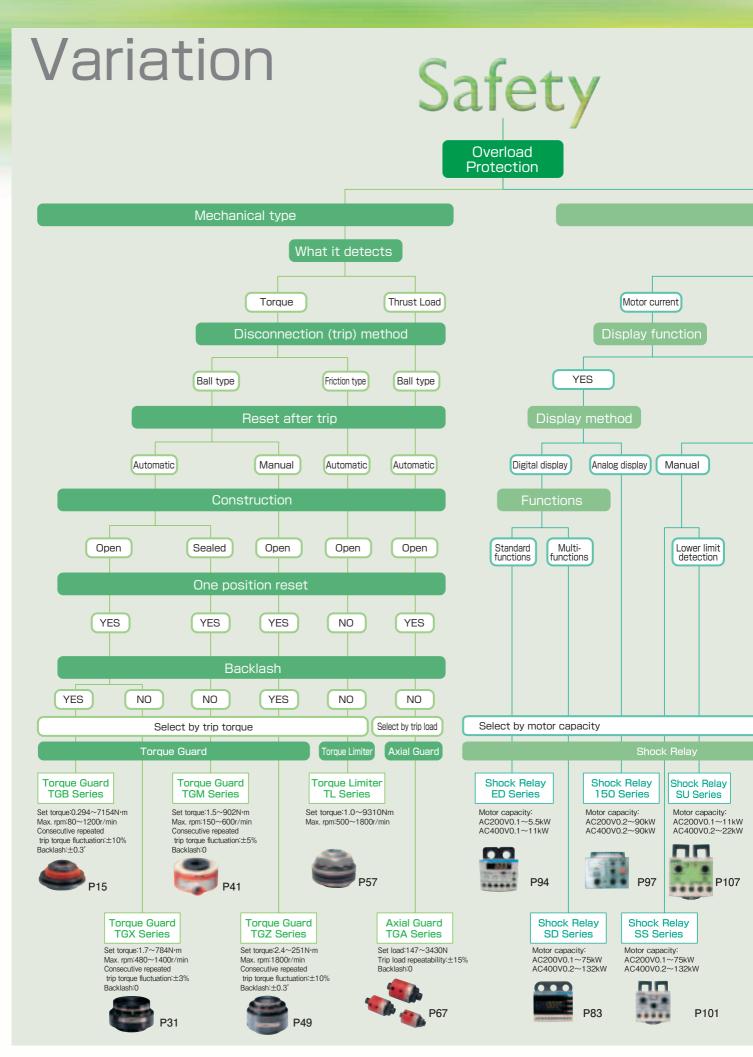
Contributing to device automation.

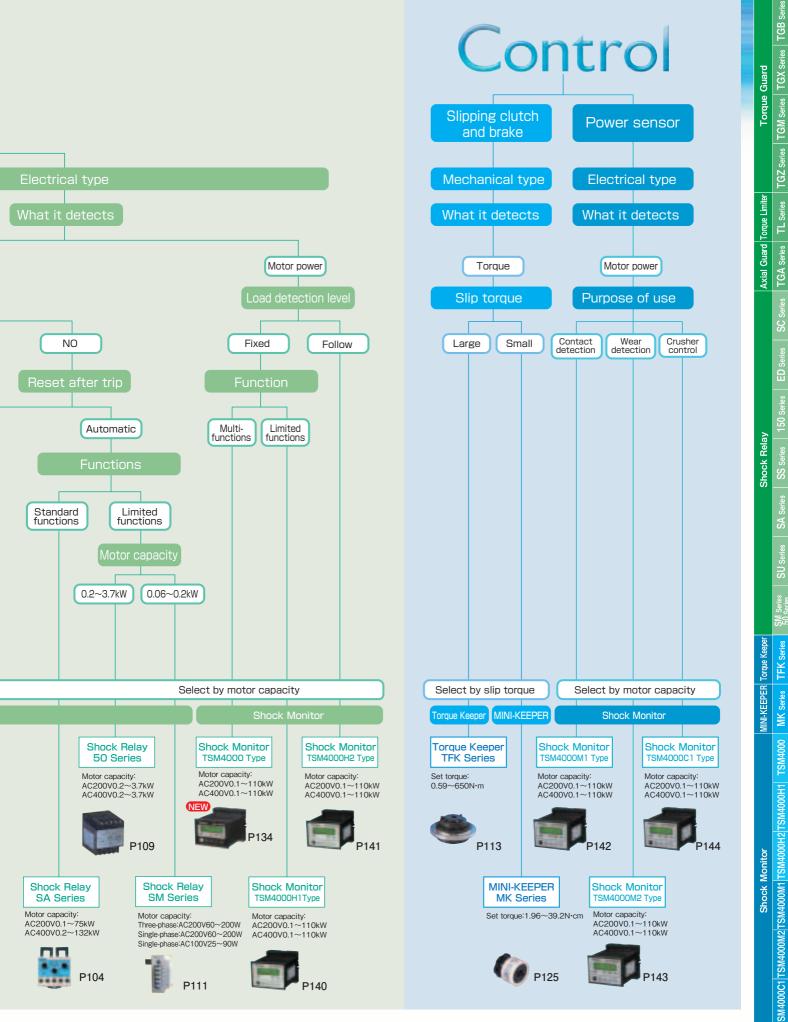
Torque Limiter Friction type

Torque Guard Separation type

Ministry of Economy, Trade and Industry picks for Good Design Award product

Ministry of Economy, Trade and Industry picks for Good Design Award product Axial Guard Linear actuating type Shock Relay


Current type



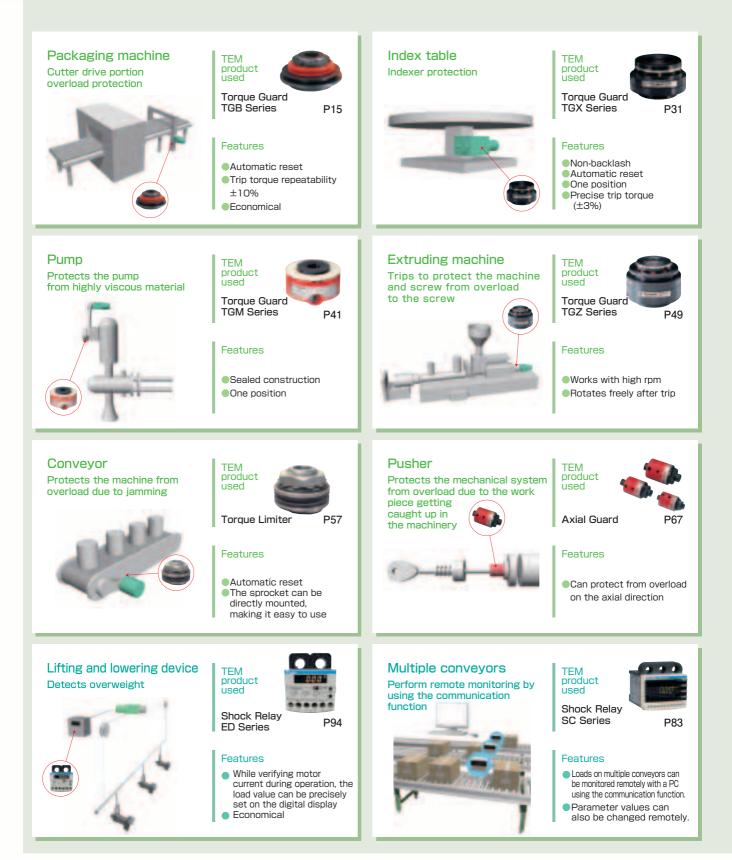
Tsubaki Emerson Safety and Control devices

TGZ Series TGM Series TGX Series TGB Series **Torque Guard** Axial Guard Torque Limiter SC Series 150 Series ED Series Shock Relay SM Series SU Series SA Series SM4000C1 TSM4000M2 TSM4000M1 TSM4000H2 TSM4000H1 TSM4000 MK Series TFK Series MINI-KEEPER Torque Keeper Shock Monitor

SAFCON contributes to the protection and control

Starting with the examples below, SAFCON meets a wide range of industrial equipment safety and control needs.

Selection guide					afe	ety	1			
ЧU	IUC				Torque	Guard		Torque Limiter	Axial Guard	
\bigcirc				TOD	TOY	TOM	T07			
				TGB Series	TGX Series	TGM Series	TGZ Series	TL Series	TGA Series	
Category	Machine		Protection, detection, applications			•			.	
	Safety or Contro	ol		-			-			
	Page	Э		P15	P31	P41	P49	P57	P67	
Transport	Crane S		Overload protection for machine overload, jamming, etc.					۲		
equipment	Hoist S		Overload protection for machine overload, jamming, etc.					•		
	Chain block S		Overload protection for machine overload, jamming, etc.					•		
	Overhead conveyor S		Chain breakage protection					•		
	Overhead conveyor S		Chain breakage detection	•		•				
	Belt conveyor S		Belt breakage protection	٠		•		۲		
	Belt conveyor S Chain conveyor S		Belt break detection, slip detection							
	-		Chain breakage protection	•		•		۲		
	Chain conveyor S Roller conveyor S		Chain breakage detection Roller axis damage protection	•		•		۲		
	Screw conveyor S		Screw damage protection	•		•				
	Bucket elevator S		Prevents chain breakage due to bucket jamming					•		
	Industrial robot S		Drive portion, pivot portion overload protection		۲				۲	
Environmental	Garbage disposal equipment S		Overload protection for garbage conveyor		Ŭ				Ŭ	
equipment	Water treatment equipment S		Overload protection due to chain breakage for scraper and dust collector					•		
	Water gate S		Gate and rack damage protection	۲						
Pump	Pump S		Motor protection			٠				
	Compressor S		Motor protection			•				
	Blower S		Motor protection							
Packaging	Bag making and filling machine ${\rm S}$		Overload protection for film feeding and seal/pillow packaging machine cutter	۲	۲	•		•	\odot	
machine	Cartoning machine S		Overload protection for workpiece conveyor and packaging equipment	۲	۲			•		
	Vacuum packaging machine S		Overload protection for workpiece conveyor and packaging equipment	۲	۲	•		•		
Food	Flour mill S		Overload protection for milling, mixing and sifting machine	•		۲		•		
processing machine	Noodle-making machine S		Overload protection for mixer and roller/extruder	•		۲		•		
	Bakery equipment S Beverages S		Prevents chain breakage for fermentation oven and cooler						•	
	Beverages S Turning machine C		Overload protection for bottle/can conveyor and dehydrating press Tip breakage detection			•		•	•	
Machine tools	Machining C		Drill wear detection							
10010	Grinding machine C		Grinding stone contact detection							
	Tapping machine C		Tap breakage detection							
	Cutter C		Saw contact detection							
	Chip conveyor S		Prevents damage due to jammed chips					•		
Metalworking	Press S		Punch and transfer portion protection	•	۲				۲	
machinery	Casting S		Overload protection for conveyor unit	•				۲		
Iron and steel	Rolling machine S		Overload protection for conveyor unit					•		
Plastic processing machines	Injection molding machine S		Screw, mold clamping protection		•	•	•			
machines	Extruding machine S		Screw, gear protection		•	•	•			
	Extruding machine S		Heater wire breakage detection							
Textile machines	Spinning machine C		Winding-off portion tension control			-				
	Textile weaving loom C		Winding portion tension control			•				
Printing machines	Printing machine C		Printed material tension control	•	•					
	Book binder S Printer C		Protects pressure portion and conveyor from overload damage Printed material tension control	•	•		•	•	•	
п	Liquid crystal manufacturing device S		Conveyor unit overload protection	•	•					
	Semiconductor production device S		Conveyor unit overload protection	•	•			•		
Others	Crusher S		Crusher blade protection	-	-			•		
	Raw garbage processor S		Mixing blade damage protection	•				•		
	Mixer S		Mixing blade damage protection					•		
	Kneading machine S		Mixing blade damage protection					•		
	Feeder S		Workpiece jamming detection							
	Stage device S		Floor mechanism overload protection							
	Lighting system S		Overweight detection for lifting devices							


of a wide range of industrial equipment

										(Optin	nal •	Recom	mende
										C	ar	+ -		
											or	ILI	O	
		Sho	ck Relay				Sh	ock Monit	or	Torque Keeper	MINI- KEEPER	S	hock Mon	itor
SC	ED	150	SS	SA	SU	SM	TSM4000	TSM4000	TSM4000	TFK	МК		TSM4000	TSM400
Series	Series	Series	Series	Series	Series	Series	Туре	H1 Type	H2 Type	Series	Series		M2 Type	
	00	-	nn	<u>nn</u>	nn	- 20		_		_				
147	-		172		1.1									R
D 00		D07	D101			_	_				· ·		_	
P83	P94	P97	P101	P104	P107	P111	P134	P140	P141	P113	P125	P142	P143	P144
٢	۲		•	•			•	•						
۲	۲			•			٠	٠						
•	•	•			۲		•	•	۲					
0	۲		•	•	♥	•	•	•						
•			-		۲		-	-						
۲	۲		•	•		•	•	•						
•	۲			•	۲	•	•	•						
•	•	•	•	•		•	•	•						۲
۲	۲		•	٠			•	٠						-
	•	•					•	•						
•	•	•					•	•	•					
•	•	•					•	•	٢					
٠	•		٠	٠	۲		•	•						
•	•		•	•			•	•						
•							•							
•	•		•	•			•	•						
•	•		٠	•			•	•						
•	•		•	•			•	•	•					
•	•		•	•			•	•	۲					
							•	•						
												-	۲	
•	•			•			•	•				•	۲	
-	-			-			•	•				9	۲	
•	•			٠			٠	٠				۲		
۲	۲		•	•		•	•	•						
•	•	•	•				•	•						
•	٠	•					•	•						
	۲		•	•										
۲	۲		•	•	۲									
					•					۲	•			
										۲	•			
•	•		•	•			•	•		۲				
•	•		•	•			•	•		۲	۲			
•	•		•	٠			•	•		-	~			
•	•		•	•			•	•						_
•	•		•	•			•	•						۲
•	•		•	۲			•	•	۲					
•	٠						٠	•	۲					
•	•		•	•			•	•						
•	•		•	•			•	•						
lacksquare	lacksquare		•				•	•						

Application Safety

Providing optimal overload protection

Tsubaki Emerson mechanical and electrical safety devices provide overload protection for various applications.

Due to cutting the peak load, overload does not occur. Excessive power to the loaded axis can be shut off.

All models are equipped with the start time function. Price stays same regardless of motor size.

Shock Monitor

Application Control For controlling devices

Slipping clutch and brake

Because it is possible to use even with continuous slipping, it is ideal for braking, accumulation and dragging.

Power sensor

Preventitive device maintenance and automation can be realised by detecting minute overload variation for grindstone work piece contacts, tool wear, crusher automatic operation, etc.

Safety Devices

Mechanical Type Torque Guard, Torque Limiter, Axial Guard

	Features, variation	p9~p10
	Selection guide	- p11~p12
	Applications	- p13~p14
8	Torque Guard TGB Series	- p15~p30
3	Torque Guard TGX Series	p31~p40
	Torque Guard TGM Series	p41~p48
	Torque Guard TGZ Series	p49~p56
2	Torque Limiter	p57~p66
A AL	Axial Guard	p67~p77

Features

Mechanical type safety devices

Torque Guard, Torque Limiter, Axial Guard

Torque Guard TGB Series

Torque Guard

Torque Guard

TGM Series

Axial Guard

Ministry of Economy, ade and Industry picks for Good Design Award produc

Ministry of Ecor Trade and Industry picks for Good Design Award product

High precision, high rigidity

TGX Series

No backlash and unsurpassed operation rigidity. Ideal for machines that require precision positioning.

Sealed construction

The sealed type possesses unsurpassed precision. Excels in wet, oily and dusty environments.

As a release type protection device, as well as an ON-OFF clutch, its simple layout makes it easy to use.

Friction type Torque Limiter

Traditional friction type. Super low price and easy to use.

Linear actuating type

This is a new type of overload protection device with ball and groove construction.

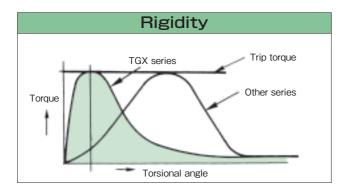
Mechanical safety mechanism variation

In order to meet the diverse needs of our customers, we provide a wide range of mechanical safety products. Refer to the chart below to choose the functions and device characteristics that best suit your safety needs.

Product		Torqu	ie Guard					
name	TGB Series							
Function, capacity	Compact size (TGB08-16)	Medium size (TGB20-70)	Large size (TGB90-130)	With sprocket (TGB20-70)				
Torque range N·m {kgf·m}	0.294~11.76 {0.03~1.2}	9.8~1080 {1.0~110}	441~7154 {45~730}	9.8~1080 {1.0~110}				
Bore range(mm)	6~16	10~70	45~130	10~70				
Consecutive repeated trip torque fluctuations	±10%	±10%	±10%	±10%				
Backlash	None	Almost none	Almost none	Almost none				
Reset method	Automatic	Automatic	Automatic	Automatic				
Overload detection	TG Sensor (option p.28)	TG Sensor (option p.28)	TG Sensor (option p.28)	TG Sensor (option p.28)				
Torque indicator	Yes	Yes	Yes	Yes				
Exterior								

Product		Torge Guard		Torque Limiter	Axial Guard
name Function, capacity	TGX Series	TGM Series	TGZ Series	TL	TGA
Torque range N·m {kgf·m}	1.7~784 {0.17~80}	1.5~902 {0.15~92}	2.4~451 {0.24~46}	1.0~9310 {0.1~950}	_
Load range N{kgf}	_	_	_	_	147~3430 {15~350}
Bore range(mm)	8~70	10~60	10~50	8~130	_
Consecutive repeated trip torque fluctuations	±3%	±5%	±10%	_	±15% (trip load)
Backlash	None	None	Almost none	None	None
Reset method	Automatic	Automatic	External force (manual)	Automatic	Automatic
Overload detection	TG Sensor (option p.28)	Limit switch P47	TG Sensor (option p.28)	Proximity switch, tachometer P65	TGA Sensor (option p. 75)
Torque or load indicator	Yes	Yes	Yes	No	Yes
Exterior		0			

The right mechanical type safety mechanism for your particular needs is available. Using the chart below, select the device that is most right for your machines.

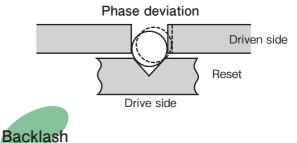

For machinery like positioning and indexing machines that require preciseness.

One position function				
TGX Series	YES			
TGM Series	YES			
TGB Series	YES			
TGZ Series	YES			
Torque Limiter	NO			

Resetting preciseness after trip				
TGX Series	±10s			
TGM Series	±10s			
TGB Series	±20s			
TGZ Series	±20s			

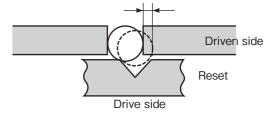
Backlash (during normal operation)		
TGX Series	0	
TGM Series	0	
TGB Series	±0.3°	
TGZ Series	±0.3°	
Torque Limiter	0	

Rigidity				
TGX Series	Superior			
TGM Series	Regular			
TGB Series	Regular			
TGZ Series	Regular			



Because of its unique construction, the drive and driven sides only mesh in one position. After tripping the Torque Guard resets and meshes in its original position.

Phase deviation between drive side and driven side after tripping and resetting again.



Connecting clearance between drive side and driven side at normal operation.

Rigidity refers to the degree of deforming ability of a solid material.

It is especially important when a system is driven by a servomotor, etc. (It indicates the input and output side's relative rotational deviation.)

Trip torque repeatability

Side-by-side trip torque fluctuation when the trip is repeated.

For the machine that you want to automatically reset after removing overload after trip

 $\pm 3\%$

±5%

±10%

 $\pm 10\%$

TGX Series	
TGB Series	Automatic
TGM Series	reset
Torque Limiter	

Trip torque repeatability

TGX Series

TGM Series

TGB Series

TGZ Series

For the machine that you want to freely rotate after trip

TGZ Series	Complete release

Arbitrarily shutoff the rotary power transmission as an ON-OFF clutch

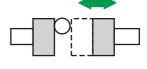
TOZ Carias	Reset by
TGZ Series	external force

For the machine that is used in a highly humid environment

TGM Series	Sealed construction
------------	---------------------

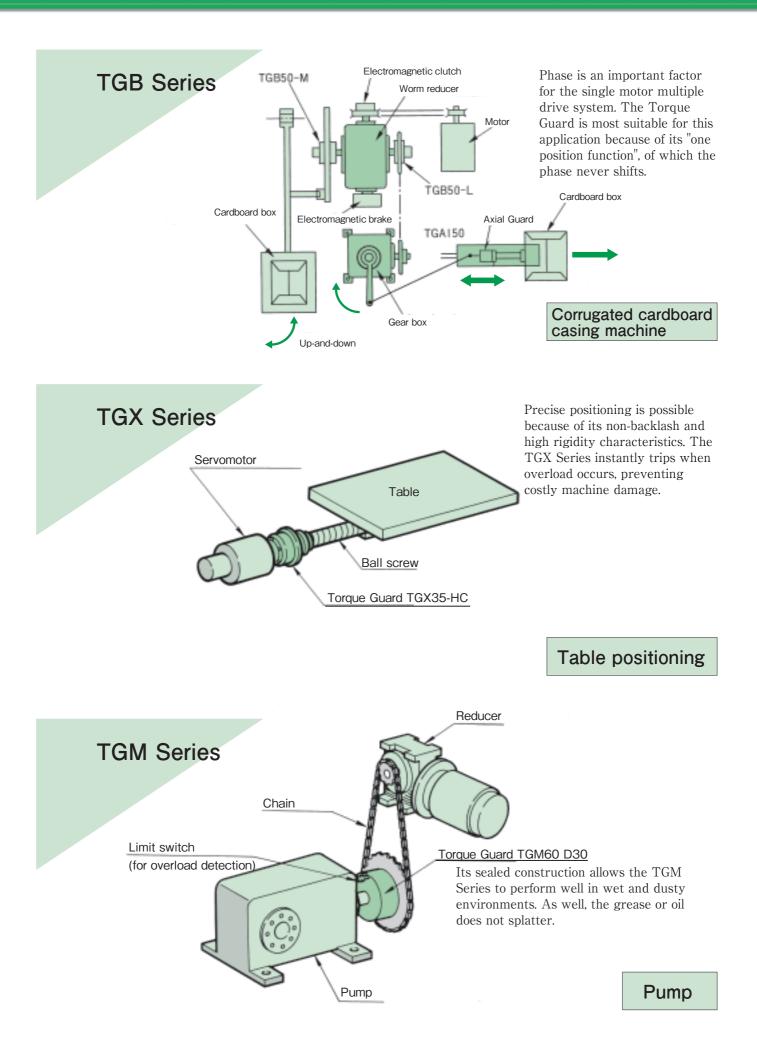
Automatic reset

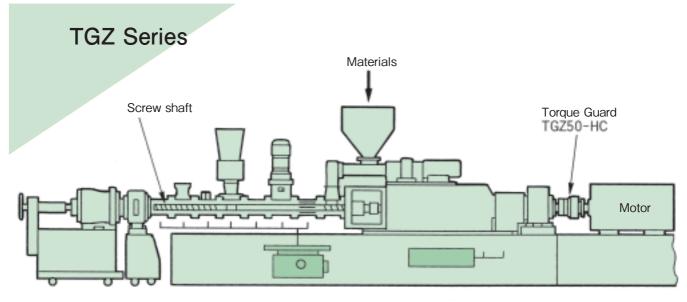
After overload is removed, the overload detection function resets automatically by inching either the drive or driven side.



ON-OFF

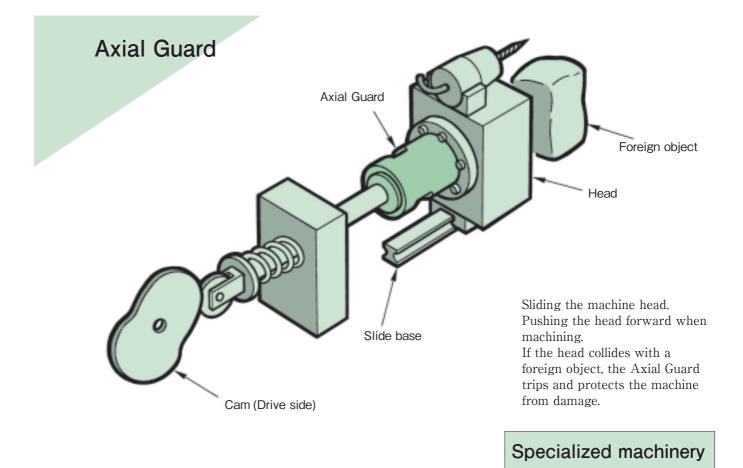
After tripping, this function completely eliminates transmission of the drive side rotation to the driven side. While in the case of an automatic reset mechanism, the overrunning of the drive side after tripping generates reset shock. This complete release function is best suited for a high speed rotation axis.


The ON-OFF function. Arbitrarily transmit or shutoff torque by external force.



Sealed Construction

Sealed construction using O-ring. Under normal usage conditions it is not necessary to refill the grease.



Due to hardening of the materials or too many materials entering the machine, there is overload on the screw.

At that time, the Torque Guard trips, protecting the screw portion of the machine from damage. Because of the direct-coupled motor (high speed rotation), after trip, the freely rotating TGZ Series is used.

Extruding machine

Torque Guard TGB Series

Features

Easy to operate and reasonably priced. This standard model can be used with a broad range of applications.

Accuracy of consecutive repeated trip torque fluctuations is within $\pm 10\%$.

Even with repeated trips, the fluctuating trip torque variation is always within $\pm 10\%$.

Wide variety of sizes available

From 0.294N·m {0.03kgf·m} to 7154N·m {730kgf·m}, 58 sizes are available.

Automatic reset

After removing the cause of overload, the TGB Series automatically re-engages by rotating the drive side.

One position type

This uniquely assembled torque transmission element ball and pocket configuration only engages in one position.

Simple torque adjustment

By simply turning the adjustment nut (bolts), trip torque can be easily adjusted.

Easy to read torque indicator

By using the indicator and torque indicator, set torque can be verified at any time.

Standard stock

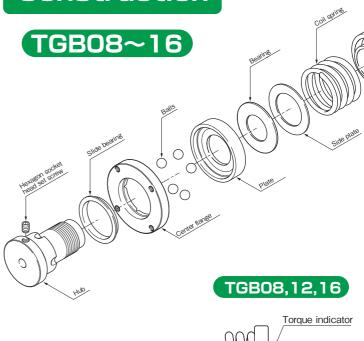
The standard TGB Series are stocked as rough bore products. (Large size TGB90 ${\sim}130$ are MTO)

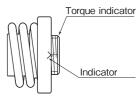
Compact and precise

(TGB08~16) Ideal for use in compact motors, robots, and compact precision machines.

Non-backlash

(TGB08~16 Does not include a Torque Guard Coupling.) Because of its special construction there is no backlash.


Standard type overload detection sensor

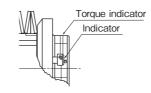

Combined with the TG sensor's non-contact type (refer to pages 28, 29), once overload is detected, the motor can be stopped and an alarm signal can be sent (optional).

Bore finishing for quick delivery

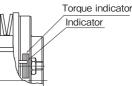
Finished bore products can be made for quick delivery. (Refer to page 22)

Construction

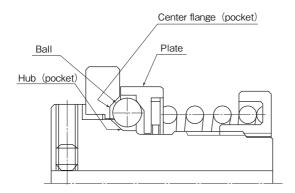
justing nut


Indicator

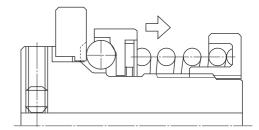
Adjusting nut


TGB20~130 TGB70 and above have a slightly different construction.

nanee



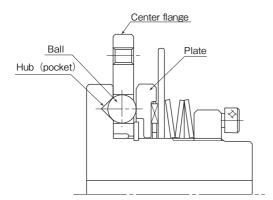
Operating principles


During normal operation (engagement)

Torque transmission is carried out using several balls. The non-symmetric arrangement of the balls and pockets allows only one engagement position. As well, there is no backlash due to non-clearance engagement between the retained and pressured balls and pockets.

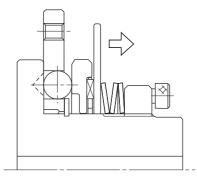
Torque is transmitted from the center flange (pockets) \rightarrow balls \rightarrow hub (pockets) \rightarrow shaft. (As well as the opposite)

During overload (trip)

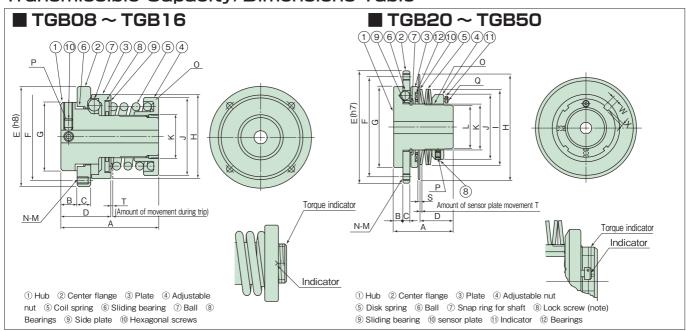


When the TGB Series trips due to overload, the ball pops out of the center flange pocket and it slides between the plate and center flange.

rgb20~50


TGB70-130 has the same operating principles.

During normal operation (engagement)


Torque is carried out using several balls. The non-symmetric arrangement of balls and pockets allows only one engagement position. Torque is transmitted from the center flange \rightarrow balls \rightarrow hub (pockets) \rightarrow shaft. (As well as the opposite)

During overload (trip)

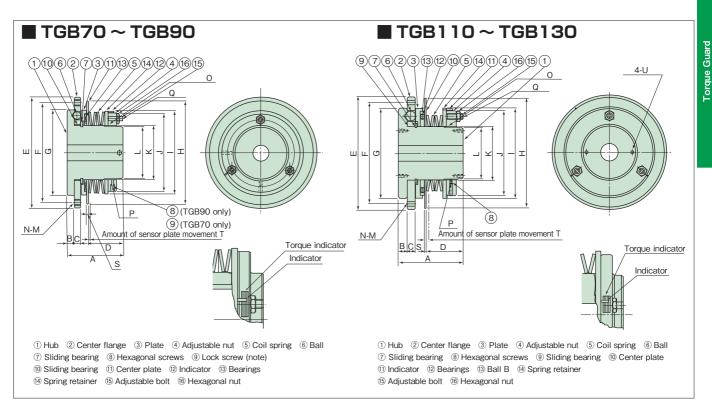
When it trips due to overload, the ball pops out of the hub pocket and rolls between the plate and hub.

When tripping, the rotational portion is entirely received by the bearings, so it rotates lightly and smoothly.

Transmissible Capacity/Dimensions Table

Note: One lock screw for fastening the adjusting nut is included with the Torque Guard. After setting to the optimal torque, tighten either lock screw with the torque amount given below. Lock screw size: M5…3.8N·m[38.7kgf·cm]

Model No.	Set torque range N∙m{kgf∙m}	Maximum r/min	Spring color	%1 Rough bore diameter	Maximum bore diameter	A	В	С	D	E	F P.C.D	G	Н	I
TGB08-L	0.29~ 1.47 {0.03~0.15}		Yellow											
TGB08-M	0.78~ 2.16 {0.08~0.22}	1200	Blue	5	8	39	6.5	5	20	40	34	26	33	—
TGB08-H	1.17~ 2.94 {0.12~0.3}		Orange											
TGB12-L	0.68~ 2.94 {0.07~0.3}		Yellow											
TGB12-M	1.96~ 4.9 { 0.2~0.5}	1000	Blue	6	12	47	8	6	23.5	48	40	32	40	—
TGB12-H	2.94~ 5.88 { 0.3~0.6}		Orange											
TGB16-L	1.47~ 4.9 {0.15~0.5}		Yellow											
TGB16-M	2.94~ 7.84 { 0.3~0.8}	900	Blue	7	16	56	8.5	8	27.7	58	50	39	48	—
TGB16-H	5.88~11.76{ 0.6~1.2}		Orange											
TGB20-H	9.8 ~44 { 1.0~4.5}	700	Orange	8	20	47	7.5	5.7	25	90	78	62	82	54
TGB30-L	20~54 { 2.0~5.5}	500	Yellow	12	30	60	9.5	7	33	113	100	82	106	75
TGB30-H	54~167 { 5.5~17}	500	Orange	12	50	00	7.5	/	55	115	100	02	100	/5
TGB50-L	69~147 { 7.0~15}		Yellow											
TGB50-M	137~412 { 14~42}	300	Blue	22	50	81	14.5	8.5	44.8	160	142	122	150	116.7
TGB50-H	196~539 { 20~55}		Orange											

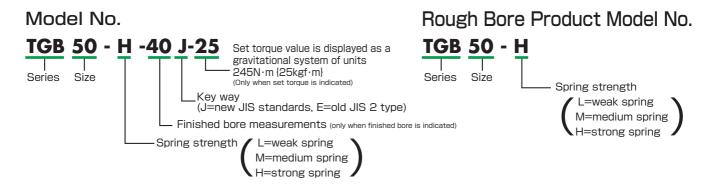

Model No.	J	к	L	м	Ν	O screw diameter × pitch	P screw diameter × length	Q screw diameter × length	S	т	w	x	Snap ring size Y	Mass kg ※2	Inertia moment ×10⁻²kg⋅m² ※2	GD² ×10²kgf∙m² ※2
TGB08-L																
TGB08-M	29.5	15	_	M 3	3	M15×1	M3× 4	—	—	0.9	—	-	-	0.14	0.0025	0.010
TGB08-H																
TGB12-L																
TGB12-M	35	20	_	M 4	3	M20×1	M4× 6	—	_	1.0	_	-	-	0.24	0.0065	0.026
TGB12-H																
TGB16-L																
TGB16-M	45	25	_	M 4	3	M25×1.5	M5× 6	—	—	1.2	_	-	-	0.44	0.0180	0.072
TGB16-H																
TGB20-H	48	32	30	M 5	4	M32×1.5	M5× 6	M4× 8	2	1.8	5	2	32	0.9	0.058	0.23
TGB30-L	65	45	42.5	М 6	6	M45×1.5	M5× 6	M4×10	2	2	6	2.5	45	2.0	0.20	0.79
TGB30-H	05	45	42.5	M O	0	M4JA1.J	1413~ 0	114/4 10	2	2	0	2.5	45	2.0	0.20	0.77
TGB50-L																
TGB50-M	98	75	70	M 8	6	M75×2	M5×10	M4×14	3	2.7	8	3.5	75	5.9	1.21	4.84
TGB50-H																

%1. All rough bore products are stock items.

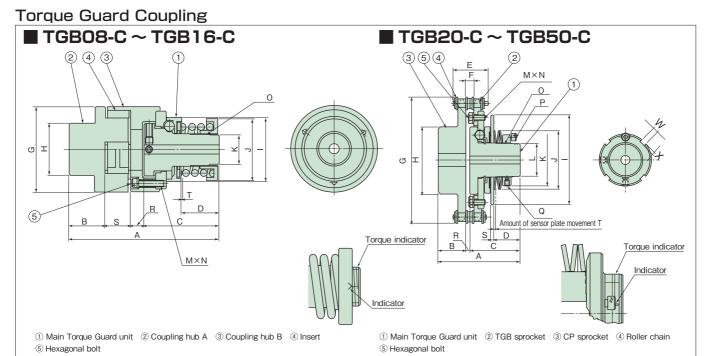
2. Mass, inertia moment and GD² are based on the bores' maximum diameters.

Unit : mm

TGB Serie


Note: One lock screw for fastening the adjusting nut is included with the Torque Guard. After setting to the optimal torque, tighten the torque with the amount given below. Lock screw size: M5...3.8N.m[38.7kgf.cm]

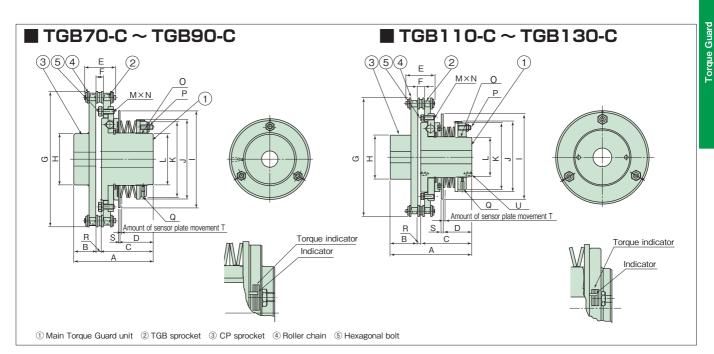
_															
	Model No.	Set torque range N·m{kgf-m}	Maximum r/min	Spring color	%1 Rough bore diameter	Maximum bore diameter	A	В	С	D	E h7	F P.C.D	G	Н	I
	TGB 70-H	294~1080{ 30~110}	160	Orange	32	70	110	14.5	12	68.5	220	200	170	205	166
	TGB 90-L	441~1320{ 45~135}	120	Yellow	42	90	157	25	22	88.6	295	265	236	290	213
	TGB 90-H	931~3140 { 95~320}	120	Orange	42	70	137	25	22	00.0	275	205	230	270	215
	TGB110-L	686~1960 { 70~200}	100	Yellow	52	110	195	30	25	105	355	325	287	345	278
	TGB110-H	1570~5100 {160~520}	100	Orange	52	110	175	30	25	105	333	325	207	545	2/0
	TGB130-L	1176~3038 {120~310}	80	Yellow	60	130	230	35	27	130	400	360	319	390	316
	TGB130-H	2650~7154 {270~730}		Orange	00	130	230	55	2/	130	400	300	517	370	510


Model No.	J	K	L	м	N	O screw diameter × pitch	P screw diameter × length	Q screw diameter × length	S	т	U screw diameter × length	Snap ring size Y	Mass kg ※2	Inertia moment ×10²kg⋅m² ※2	$\begin{array}{c} GD^2 \\ \times 10^{-2} \text{kgf} \cdot \text{m}^2 \\ \divideontimes 2 \end{array}$
TGB 70-H	157	110	106	M10	6	M110× 2	M 5× 10	M10× 28	3	3.3	—	110	17.0	6.3	25.2
TGB 90-L TGB 90-H	203	130	124	M12	8	M130× 2	M10× 20	M16× 35	5.5	5.4	M 8× 16	130	37.5	33.8	135
TGB110-L TGB110-H	266	160	155	M16	6	M160× 3	M12× 20	M16× 45	7	6	M10× 20	160	69.6	91	364
TGB130-L TGB130-H	304	190	184	M16	8	M190× 3	M16× 30	M 20× 60	7	6.6	M12× 24	190	102	167	668

*1. The TGB70 is a rough bore stock item. TGB90-130 are MTO.

2. Mass, inertia moment and GD² are based on the bores' maximum diameters.

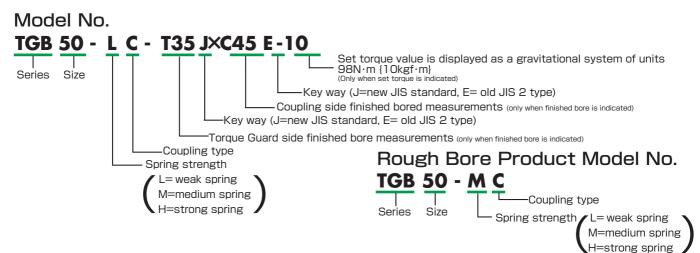
Transmissible Capacity/Dimensions Table

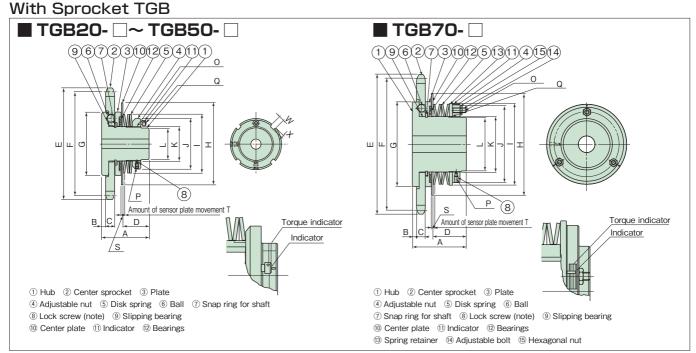


															Unit	: mm
Model No.	Set torque range N∙m{kgf-m}	Maximum r/min	Spring color		ue Guard Maximum bore diameter		Dupling Maximum bore diameter	А	В	С	D	E	F	G	Н	I
TGB08-LC	0.29~1.47 {0.03~0.15}		Yellow													
TGB08-MC	0.78~2.16 {0.08~0.22}	1200	Blue	5	8	—	15	80	20.6	39	19	—	—	44.5	24	33
TGB08-HC	1.17~2.94 {0.12~0.3}		Orange]												
TGB12-LC	0.68~2.94 {0.07~0.3}		Yellow													
TGB12-MC	1.96~4.9 { 0.2~0.5}	1000	Blue	6	12	_	20	88	19.9	47	23.5		—	53.6	32	40
TGB12-HC	2.94~5.88 { 0.3~0.6}		Orange													
TGB16-LC	1.47~4.9 {0.15~0.5}		Yellow													
TGB16-MC	2.94~7.84 { 0.3~0.8}	900	Blue	7	16	_	25	112	27	56	28.3	—	—	64.3	38	48
TGB16-HC	5.88~11.76 { 0.6~1.2}		Orange]												
TGB20-HC	9.8 ~44 { 1.0~4.5}	700	Orange	8	20	12.5	42	76	25	47	25	32.6	7.4	117.4	63	82
TGB30-LC	20~54 { 2.0~5.5}	500	Yellow	12	30	18	48	93	20	60	33	40.5	9.7	146.7	73	106
TGB30-HC	54~167 { 5.5~17}	500	Orange		30	10	40	73	20	00	33	40.5	7./	140.7	/3	100
TGB50-LC	69~147 { 7.0~15}		Yellow													
TGB50-MC	137~412 { 14~42}	300	Blue	22	50	18	55	126	40	81	44.8	51.0	11.6	200.3	83	150
TGB50-HC	196~539 { 20~55}		Orange													

Model No.	J	К	L	M×N×No. of pieces	O screw diameter × pitch		Q screw diameter × length	R	S	т	W	x	Coupling model No. or sprocket	Mass kg ※2	Inertia moment ×10 ⁻² kg·m ² ※2	$\begin{array}{c} GD^2 \\ \times 10^{\cdot 2} \text{kgf} \cdot \text{m}^2 \\ \divideontimes 2 \end{array}$
TGB08-LC																
TGB08-MC	29.5	15	_	M3×12ℓ×3	M15×1	—	—	7.2	13.2	0.9	—	—	L075A	0.235	0.0050	0.020
TGB08-HC																
TGB12-LC																
TGB12-MC	37	20	_	M4×16l×3	M20×1	—	—	7.9	13.2	1	—	—	L090A	0.38	0.0123	0.049
TGB12-HC																
TGB16-LC																
TGB16-MC	47	25	_	$M4 \times 20\ell \times 3$	M25×1.5	_	—	10.2	18.8	1.2	—	_	L100A	0.673	0.0324	0.129
TGB16-HC																
TGB20-HC	54	48	30	M5×12l×4	M32×1.5	M4× 8	M5× 6	4	2	1.8	5	2	RS40-26	2.5	0.313	1.25
TGB30-LC	75	65	42.5	M6×16&×6	M45×1.5	M4×10	M5× 6	5	2	2	6	2.5	RS50-26	4.8	0.948	3.79
TGB30-HC	/5	00	42.5	100~101~0	11143^1.3	///4/10	MJA 0	5	2	2	0	2.5	K350-20	4.0	0.740	5.77
TGB50-LC																
TGB50-MC	116.7	98	70	M8×20&×6	M75×2	M4×14	M5×10	5	3	2.7	8	3.5	RS60-30	12.2	4.43	17.7
TGB50-HC																

*1. All rough bore products are stock items.


2. Mass, inertia moment and GD² are based on the bores' maximum diameters.


															Unit	t∶mm
Model No.	Set torque range N·m{kgf-m}	Maximum r/min	Spring color	Torque Rough bore diameter	e Guard Maximum bore diameter	Cou Rough bore diameter	oling Maximum bore diameter	А	В	С	D	E	F	G	Н	I
TGB 70-HC	294~1080 { 30~110}	160	Orange	32	70	28	75	165	45	110	68.5	64.8	15.3	283.2	107	205
TGB 90-LC	441~1320 { 45~135}	120	Yellow	42	90	33	103	242	80	157	88.6	79.5	19.2	394.4	147	290
TGB 90-HC	931~3140 { 95~320}	120	Orange	42	70	55	105	242	00	1.57	00.0	70.5	10.2	574.4	147	270
TGB110-LC	686~1960 { 70~200}	100	Yellow	52	110	38	113	303	100	195	105	00.2	21.0	473.4	157	345
TGB110-HC	1570~5100 {160~520}	100	Orange	52	110	30	115	303	100	175	105	77.2	21.7	4/ 3.4	157	545
TGB130-LC	1180~3038 {120~310}	80	Yellow	60	130	53	145	365	120	230	130	127.3	20 1	534.2	197	390
TGB130-HC	2650~7154 {270~730}	80	Orange	00	130	55	145	505	120	230	150	127.3	27.1	554.Z	177	370

Model No.	J	К	L	M×N×No. of pieces	O screw diameter × pitch	P screw diameter × length	Q screw diameter × length	R	S	т	U screw diameter × length	Sprocket	Mass kg ※1	Inertia moment ×10⁻²kg⋅m² ※1	$\begin{array}{c} GD^2 \\ \times 10^2 \text{kgf} \cdot \text{m}^2 \\ \divideontimes 1 \end{array}$
TGB 70-HC	166	157	106	M10×25&×6	M110×2	M10×28	M 5×10	10	3	3.3	—	RS80-32	32.0	22.43	89.7
TGB 90-LC TGB 90-HC	213	203	124	M12×35&×8	M130×2	M16×35	M10×20	5	5.5	5.4	M 8×16	RS100-36	71.1	117.32	469.29
TGB110-LC TGB110-HC	278	266	155	M16×45&×6	M160×3	M16×45	M12×20	8	7	6	M10×20	RS120-36	130.5	314.15	1256.61
TGB130-LC TGB130-HC	316	304	184	M16×50&×8	M190×3	M20×60	M16×30	15	7	6.6	M12×24	RS160-30	202.3	632.66	2530.63

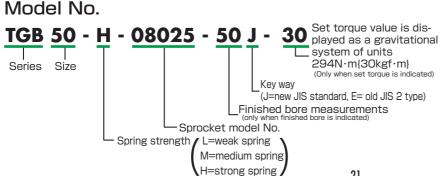
%1. Mass, inertia moment and $GD^{\scriptscriptstyle 2}$ are based on the bores' maximum diameters.

Transmissible Capacity/Dimensions Table

Note: One lock screw for fastening the adjusting nut is included with the Torque Guard. After setting to the optimal torque, tighten the torque with the amount given below. Lock screw size: M5...3.8N.m{38.7kgf.cm} M8...16N.m{163kgf.cm}

Model No.	Set torque range N•m{kgf-m}	Maximum r/min	Sprocket specifications	Spring color	Rough bore diameter	Maximum bore diameter	A	В	С	D	E	F P.C.D	G	н	I
TGB20-H-	9.8~44 { 1.0~4.5}	700	RS40-22T	Orange	8	20	47	5.9	7.2	25	96	89.24	62	82	54
IGB20-II-	7.0 44 { 1.0 4.3}	700	RS40-27T	Crunge	0	20	47	J.7	1.2	25	116	109.4	02	02	54
TGB30-L-	20~54 { 2.0~5.5}	500	RS60-19T	Yellow	12	30	60	4.8	11.6	33	126	115.74	82	106	75
TGB30-H-	54~167 { 5.5~17}	500	RS60-24T	Orange	12	50	00	4.0	11.0	55	156	145.95	02	100	/5
TGB50-L-	69~147 { 7.0~15}		RS80-20T	Yellow							176	162.37			
TGB50-M-	137~412 { 14~42}	300		Blue	22	50	81	8.42	14.5	44.8			122	150	116.7
TGB50-H-	196~539 { 20~55}		RS80-25T	Orange							216	202.66			
TGB70-H-	294~1080{ 30~110}	160	RS100-22T	Orange	32	70	110	8.9	17.5	68.5	240	223.10	170	205	166
IGB/0-II-	274 1000{ 30 110}	100	RS100-26T	Crange	52	70	110	0.7	17.5	00.5	281	263.40	170	205	100

Model No.	J	К	L	O screw diameter ×pitch	P screw diameter ×length	Q screw diameter ×length	S	т	w	x	Snap ring size Y	Mass kg	Inertia moment $\times 10^{-2}$ kg·m ²	$\begin{array}{c} GD^2 \\ \times 10^{\cdot 2} kgf \cdot m^2 \end{array}$
TGB20-H-	48	32	30	M 32× 1.5	M5× 6	M 4× 8	2	1.8	5	2	32	0.94	0.255	0.064
	40	52	50	W 32× 1.5	MOX 0	M 4A 0	2	1.0	5	2	52	1.15	0.486	0.121
TGB30-L-	65	45	42.5	M 45× 1.5	M5× 6	M 4× 10	2	2	4	2.5	45	2.21	1.06	0.264
TGB30-H-	05	45	42.5	M 43^ 1.5	1413~ 0	M 4^ 10	2	2	6	2.5	45	2.78	2.07	0.517
TGB50-L-												6.35	6.10	1.52
TGB50-M-	98	75	70	M 75× 2	M5× 10	M 4× 14	3	2.7	8	3.5	75			
TGB50-H-												7.66	10.7	2.68
тдв70-н-	157	110	106	M110× 2	M5× 10	M10× 28	3	3.3			110	17.8	29.4	7.35
16670-H-	13/	110	100	MITUX Z	M3^ 10	MIU^ 20	3	5.5		_	110	19.9	42.5	10.6


%1. All products have a short delivery time.

2. Specify the preferable sprocket size.

3. Mass, inertia moment and GD² are based on the bores' maximum diameters.

4. Sprocket specifications go in the box at the end of the model number. As well, refer to the below chart for Model No.

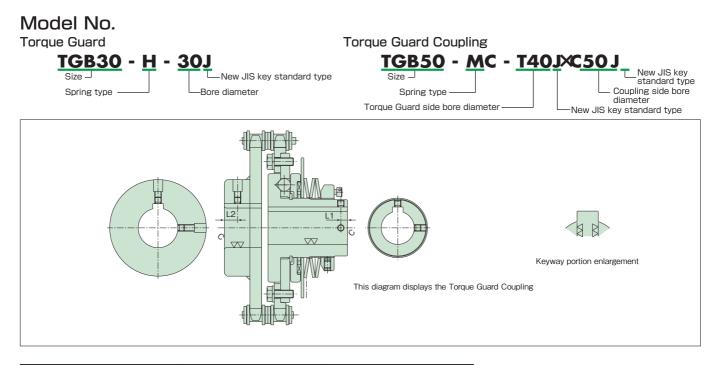
N

Aodel No.	Sprocket specifications	Indication of Model No.
TGB20	RS40-22T	04022
19820	RS40-27T	04027
TGB30	RS60-19T	06019
IGBSU	RS60-24T	06024
TGB50	RS80-20T	08020
IGBSU	RS80-25T	08025
TGB70	RS100-22T	10022
196/0	RS100-26T	10026

Sprocket Indication Method

Unit : mm

Finished Bore Torque Guard TGB/Torque Guard Coupling TGB-C


Finished bore products have a short delivery time

Bore/finished keyway

TGB20-TGB70 and TGB20-C-TGB70-C finished bore is standard

Finished Bore Measurements Chart

Finished Bore Measurements Chart								
Torque G	juard TGB	Finished bore dimensions						
Torque Guard Model No.	Torque Guard Coupling Model No.	Torque Guard side	Coupling side (Torque Guard Coupling only)					
TGB20	TGB20-C	9,10,11,12,14,15,16,17,18,19,20	14,15,16,17,18,19,20,22,24,25,28,29, 30,32,33,35,36,38,40,42					
TGB30	TGB30-C	14,15,16,17,18,19,20,22,24,25,28, 29,30	20,22,24,25,28,29,30,32,33,35,36,38, 40,42,43,45,46,48					
TGB50	TGB50-C	24,25,28,29,30,32,33,35,36,38,40, 42,43,45,46,48,50	20,22,24,25,28,29,30,32,33,35,36,38, 40,42,43,45,46,48,50,52,55					
TGB70	TGB70-C	35,36,38,40,42,43,45,46,48,50,52,55, 56,57,60,63,65,70	30,32,33,35,36,38,40,42,43,45,46,48, 50,52,55,56,57,60,63,65,70,71,75					
Delive	Delivery time		weeks by sea					

Torque G	uard TGB	Torque G	uard Side		Coupling Side Guard Coupling only)		
Torque Guard Model No.	Torque Guard Coupling Model No.	Set screw	Set screw position L1	Set screw	Set screw position L2		
TGB20	TGB20-C	2-M4× 4	4	2-M4× 4	8		
TGB30	TGB30-C	2-M5× 5	5	2-M5× 5	10		
TGB50	TGB50-C	2-M6× 6	6	2-M6× 6	12		
TGB70	TGB70-C	2-M8×12	6	2-M8×12	15		

1. Set screws are located at 2 positions, on the keyway and 90° CW from it.

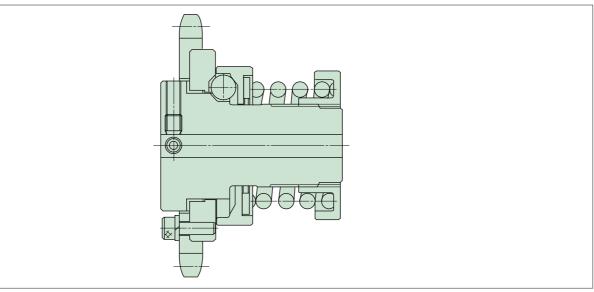
Bore Diameter and Keyway Specifications • Bore diamter tolerance is as follows:

- $\phi\,18$ and below…0 \sim +0.021mm
 - $\phi~19$ and above…H7
- · The keyway is new JIS (JIS B 1301-1996) "standard".
- · Set screws are included in the delivery

Bore diameter	Chamfer dimensions
ϕ 25 and below	C0.5
ϕ 50 and below	C1
ϕ 51 and above	C1.5

• Roller chain and sprocket selection

For more information on roller chain and sprocket selection and handling, refer to the Tsubaki drive chain catalog.


Sprocket specifications

Sprockets are hardened.

Installation example

Sprocket lubrication

- For more information on sprocket lubrication, refer to the Tsubaki drive chain catalog.
- If the Torque Guard is lubricated in an oil bath or by the rotary plate or forced pump, there is a possibility that the indicator and name sticker may come off.

Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

1. Setting trip torque

$$\begin{split} T_{\rm P} &= \ T_{\rm L} \times {\rm S.F} \ = \frac{60000 \times P}{2 \, \pi \, \cdot \, n} \times {\rm S.F} \ \left| T_{\rm P} = \frac{974 \times P}{n} \times {\rm S.F} \right| \\ T_{\rm P} &= \ {\rm Trip \ torque} \quad {\rm N} \cdot m | {\rm kgf} \cdot m | \qquad T_{\rm L} = {\rm Load \ torque} \quad {\rm N} \cdot m | {\rm kgf} \cdot m | \end{split}$$

n = rpm r/min

(1) From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.

(2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1.

Service factor	Operating conditions
1.25	In the case of normal start up/stop, intermittent operation
1.50	In the case of a heavy shock load or forward-reverse driving

2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$\begin{split} K = & \frac{I_L + I_t}{I_s} \quad \left\{ K = \frac{GD_L^2 + GD_t^2}{GD_s^2} \right\} \quad Tt = \frac{K \cdot T_s + T_L}{1 + K} \quad Tp = SF \cdot Tt \\ K \quad \vdots Inertia ratio \end{split}$$

K : Inertia ratio

 I_{s} : Drive side inertia moment $(kg\!\cdot\!m^2)$

 $\{GD_s^2 : Drive \ side \ GD^2 \ (kgf \cdot m^2)\}$

- I_L : Load side inertia moment (kg·m²)
- $\{GD_L^2 : Load side GD^2 (kgf \cdot m^2)\}$
- I_t : Torque Guard inertia moment (kg·m²)
- {GD_t² : Torque Guard GD² (kgf·m²)}
- $T_{\rm s} ~~ : Motor ~ starting ~ torque ~ (N \cdot m) \{ kgf \cdot m \}$
- T_t : Torque in Torque Guard during start up (N \cdot m){kgf \cdot m}
- T_L : Load torque (N·m){kgf·m}
- T_{P} : Trip torque (N·m){kgf·m}
- S.F : Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD² and torque value.
3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

5. Verifying bore diameter

Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

6. Confirming rpm

Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.

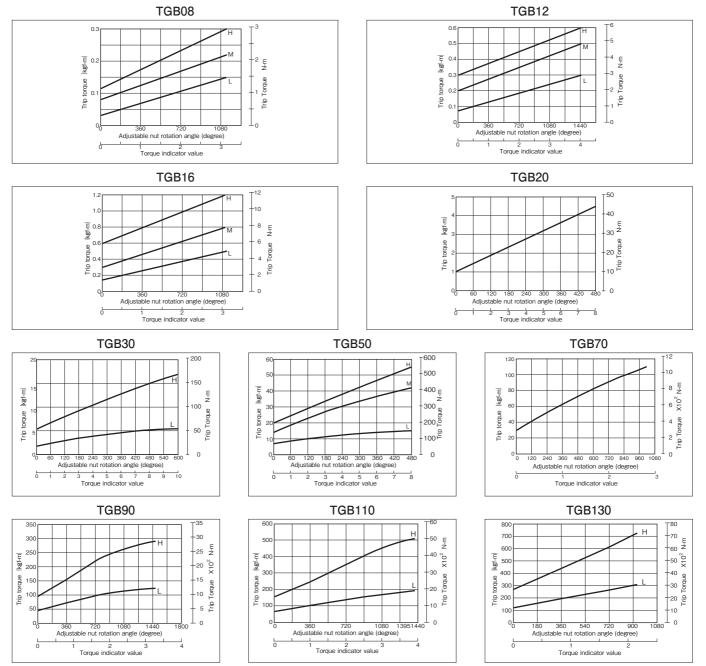
Handling 1. Setting trip torque

- (1) TGB Torque Guard are all set at the "0" point (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Torque Guard. (Refer to each size in the graphs below)
- (2) For the TGB70 \sim 130, loosen the three hexagonal lock-nuts for adjusting bolts.

(The adjusting nuts of TGB08-50 can be turned as is.)

(3) From the "Tightening Amount - Torque Correlation Chart" (below), find the adjusting nut's (bolt) tightening angle equivalent to the predetermined trip torque. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque.

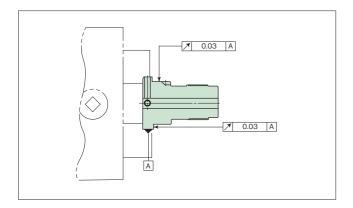
Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use them only as a rough guide.


(4) For the TGB20 \sim 50, tighten one lock screw for the adjusting nut.

For the TGB70 \sim 130, use a hexagonal nut to lock it.

(The TGB08 \sim 16 adjusting nut is locked with a nylon coating.)

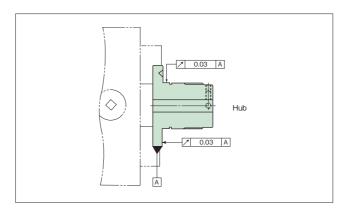
(5) Do not turn the adjusting nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend. (TGB08-16 uses a coil spring)

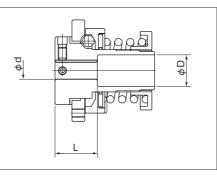

2. Tightening Amount-Torque Correlation Chart

3. Bore finishing

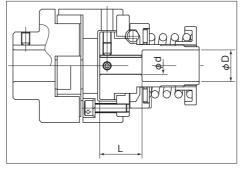
TGB08~16

- The hub's materials are made up of a surface-hardened iron based sintered alloy.
- (1) Loosen the adjusting nut and disassemble all components. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion. The hub's material is a surface-hardened iron based sintered alloy, so we recommend the cutting tool be made of a hard material (JIS 9-20, K-01).
- (3) Keyway machining should be carried out directly below the setscrew tap.
- (4) After bore finishing is completed and you are reassembling the Torque Guard, make sure to coat the ball and bearings with grease.


(5) For bore finishing, refer to the table and drawings below and make stepped bores.


• Table of bore lengths

Model No.	Bore diameter (ϕ d)	Bore length (L, mm)	Counterbore diameter (ϕ D)	
TGB08 TGB08-C	ϕ 6 and above ϕ 8 and below	20 mm	φ11	
	ϕ 7 and above less than ϕ 10	20 mm		
TGB12 TGB12-C	ϕ 10 and above less than ϕ 12	30 mm	φ15	
	φ12	Total length	N/A	
	ϕ 8 and above less than ϕ 10	20 mm	φ15 N/A	
TGB16 TGB16-C	ϕ 10 and above less than ϕ 12	30 mm		
	ϕ 12 and above ϕ 16 and below	Total length		


TGB20~130

- The hub has been thermally refined.
- Loosen the adjusting nut and disassemble all components. Remove both the snap ring and the center plate. Make sure not to get any dust or dirt on the components.
- (2) Chuck the hub flange's outside diameter and center the hub portion.
- (3) Keyway finishing should be carried out directly below the torque indicator's gap space.
- (4) Tapping for the set screw should be machined at the torque indicator's space and at 90° phasing from it. This tapping should be on the torque indicator.
- (5) After bore finishing is completed and you are reassembling the Torque Guard, make sure to coat the ball and bearings with grease.

TGB08 ~ 16

 $TGB08C \sim 16C$

Handling

4. Resetting

As it is an automatic reset system, just re-starting the drive side can automatically reset it.

- (1) When the Torque Guard trips due to overload, stop the rotation and remove the cause of the overload.
- (2) When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor.
- \triangle To avoid injury, do not reset the Torque Guard by hand.
- (3) A distinct clicking sound is made when the ball settles in its pocket.

Drive member selection and manufacture

A sprocket, gear and pulley can be installed in the Torque Guard to act as the drive member (center member). When selecting and manufacturing a drive member, refer to the precautions listed below.

 Use the outer diameter of the center flange as the spigot facing, and fix the drive member with bolts.
 Verify the diameter of the Torque Guard's spigot facing

with that of the drive member.

Each spigot is as listed in the chart below.

			Unit: mm
Model No.	Spigot diameter	Model No.	Spigot diameter
TGB08-L,M,H	40 (h8)	TGB50-L,M,H	160 (h7)
TGB12-L,M,H	48 (h8)	TGB70-H	220 (h7)
TGB16-L,M,H	58 (h8)	TGB90-L,H	295 (h7)
TGB20-H	90 (h7)	TGB110-L,H	355 (h7)
TGB30-L,H	113 (h7)	TGB130-L,H	400 (h7)

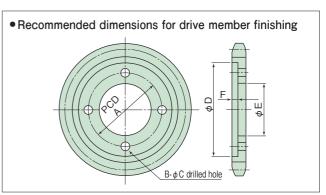
(2) Center flange installation

• TGB08 ~ 16

The center flange's installation tap hole is penetrated. If the bolt's length is longer than the center flange, it will make contact with the plate. Make sure it does not stick out on the plate side.

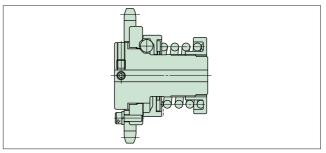
• TGB20 ~ 130

The center flange's installation tap hole is penetrated. If the the bolt's length is too long there may be contact with the sensor plate.

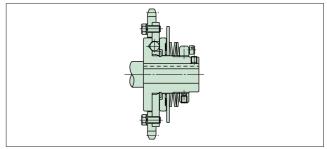

The recommended bolt screw lengths are listed in the chart below.

			Onn. mm
Model No.	Bolt screw length	Model No.	Bolt screw length
TGB08-L,M,H	4	TGB50-L,M,H	9~11
TGB12-L,M,H	5	TGB70-H	13 ~ 15
TGB16-L,M,H	7	TGB90-L,H	23 ~ 25
TGB20-H	6~7	TGB110-L,H	$26 \sim 28$
TGB30-L,H	8~10	TGB130-L,H	28 ~ 30

(3) Refer to the chart below for drive member bolt diameters (JIS B1001-1985).


• Bolt bore diameter	JIS B1001 - 1985
----------------------	------------------

							01	
Nominal screw diameter	3	4	5	6	8	10	12	16
Bolt bore diameter	3.4	4.5	5.5	6.6	9	11	13.5	17.5



Series name	Drive member finishing dimensions								
Series name	А	В	С	D	E	F			
TGB08-L,M,H	34	3	3.4	40 _{H7}	28	3			
TGB12-L,M,H	40	3	4.5	48 _{H7}	33	3			
TGB16-L,M,H	50	3	4.5	58 _{H7}	41	3			
TGB20-H	78	4	5.5	90 _{H7}	64	3			
TGB30-L,H	100	6	6.6	113 _{H7}	84	4			
TGB50-L,M,H	142	6	9.0	160 _{H7}	124	5			
TGB70-H	200	6	11	220 _{H7}	172	5			
TGB90-L,H	265	8	13.5	295 _{н8}	240	5			
TGB110-L,H	325	6	17.5	355н8	292	5			
TGB130-L,H	360	8	17.5	400 _{H8}	325	5			

■ Installation example TGB08 ~ 16

■ Installation example TGB20 ~ 50

I Init: mm

Sprocket Model No. TGB size	RS25	RS35	RS41	RS40	RS50	R\$60	R\$80	RS100	RS120	RS140	RS160
TGB08-L,M,H	(24)	(17)	(14)	14	12	13 (10)					
TGB12-L,M,H	(28)	(20)	(16)	16	13	13 (11)					
TGB16-L,M,H	(32)	(23)	(18)	18	15	14					
TGB20-H	(48)	(34)	(26)	26	22	19	15	13	13 (11)		
TGB30-L,H	(60)	(41)	(32)	32	26	22	18	15	13		
TGB50-L,M,H		(57)	(43)	45 (43)	35	30	24	20	17		
TGB70-H			(58)	60 (58)	48 (47)	40	32 (31)	26	24 (22)		
TGB90-L,H					62	52	40	33	28	25	22
TGB110-L,H					74	62	48	39	33	29	26
TGB130-L,H					83	70	53	43	37	32	24

Usable sprocket minimum number of teeth

* The teeth number in parentheses are not standard A Type sprockets.

Make sure to use a sprocket that has a one size larger number of teeth. * The above are the smallest possible installable sprockets. Sprocket transmissible power is not considered,

so refer to Tsubaki's drive chain catalog for more information on sprocket selection and handling.

Maintenance

1. Torque Guard (TGB)

Lightly coat the balls and bearings with grease once per year or every 1,000 trips.

Grease

Exxon Mobil	Showa Shell	Japan-Energy	Idemitsu	Nippon Oil Corporation	Cosmo Oil
Mobilux EP2	Alvania EP Grease 2	Rizonics EP 2	Daphny Eponex Grease EP 2	Epinoc Grease AP(N)2	Cosmo Dynamax EP Grease 2

2. Coupling portion (TGB20-C ~ TGB130-C)

· Coat the roller chain and sprocket with grease once per month. Use the same grease for the Torque Guard.

3. Sprocket portion

- · For more information on sprocket and roller chain maintenance, refer to Tsubakimoto Chain's drive chain catalog.
- · If operating with a sprocket and roller chain for a long period of time, even if the trip frequency and number of times is very low, it is possible for the sprocket to wear. Inspect the sprocket for wear on a regular basis. Refer to the Tsubakimoto drive chain catalog for inspection procedures.

Lock screw/tightening torque reference chart

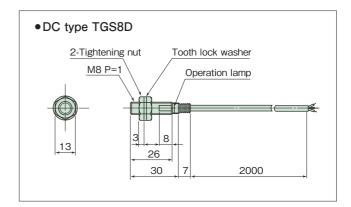
Hexagon socket head screw	Tightening torque N · m{kgf · cm}							
M5	3.8 {38.7}							
M8	16 {163}							

Precautions:

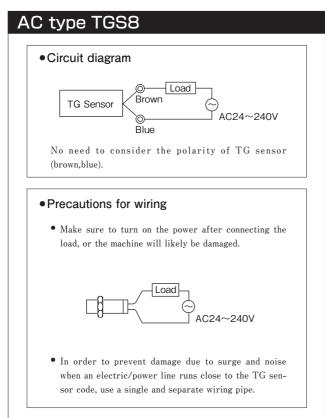
When re-tightening the lock screws, make sure to take the following precautions:

- 1. Confirm that the plug tip has not been removed. If a lock screw is used with a tipless plug, the hub's thread may be damaged or the hub's pocket may get jammed.
- 2. Confirm that the plug's tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- * If 1. or 2. is found to be the case, exchange the damaged parts with new ones

TGB Serie


orque Guard

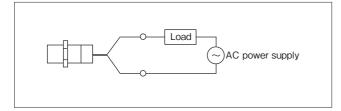
TG Sensor


The TG Sensor is a Torque Guard specific proximity switch system overload detecting sensor. After detecting Torque Guard overload, the motor can be stopped and the alarm can be signaled. It is of course possible to install the TG Sensor on other series' and sizes as well.

		AC type	DC type				
Mo	odel no.	TGS8	TGS8D				
Power	Rating	AC24 ~ 240V	DC12~24V				
supply voltage	Range to be used	AC20 ~ 264V (50/60Hz)	DC10~30V				
Current	consumption	Less than 1.7mA (at AC200V)	Less than 13mA				
Control output (op	ening and closing capacity)	5~100mA	Max. 200mA				
Indic	ator lamp	Operation indicator					
Ambient ope	erating temperature	-25 \sim +70°C (does not freeze)					
Ambient of	perating humidity	35 ~ 95%RH					
Out	put form	NC (When not detecting the output opening and clo	e sensor plate, psing state is displayed)				
Operation mode			Open collector				
Insulatio	on resistance	More than 50M $\!\Omega$ (at DC50V megger) In between the energized part and the case					
	Mass	Approx. 45g (with 2m code)					
Residual voltage		Refer to characteristic data	Less than 2.0V (load current 200mA/code length 2m)				

• AC type TGS8

TG Sensor Handling * Do not swing, excessively pull or strike the detecting portion with an object.


<section-header> DC type TGS8D •Circuit diagram

Dimensions Diagram

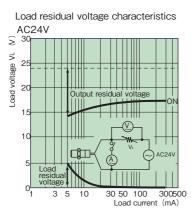
Selecting overload and wiring information (AC type for TGS8)

• Connecting to a power source

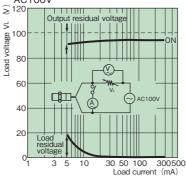
Make sure to connect via load. A direct connection will damage the internal elements.

- Using a metal pipe to prevent malfunction/damage In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.
- Surge protection

The TG Sensor has built-in absorbing circuits, but when the TG Sensor is used near a device such as a motor or arc welder where a large surge occurs, make sure to insert a surge absorber such as a varister in the source.


• Influence of consumption (leakage) current

Even when the TG Sensor is OFF, in order to keep the circuits running, a small amount of current flows as current consumption. (Refer to the "Consumption (leakage) Current" graph) Consequently, because there is a small amount of voltage on the load, it may cause the occurring load to malfunction when resetting. Before using the sensor, confirm that this voltage is less than the load reset voltage. As well, when using the relay as load, be aware that due to the relay's construction when the leakage current is OFF, a buzz will sound.


• When power supply voltage is low

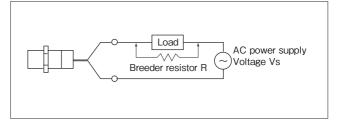
When power supply voltage is smaller than AC48V and load current is less than 10mA, the output residual voltage when the TG Sensor is ON will become large, and the load residual voltage will become large when it is OFF. (Refer to the Residual Voltage Load Characteristics graph.) Take note of operating voltage load when using a relay, etc.

· Load residual voltage characteristics

Load residual voltage characteristics

• When load current is small

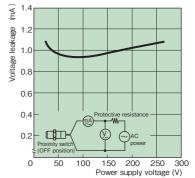
When load current is less than 5mA, load residual voltage becomes large in the TG Sensor. (Refer to the Residual Voltage Load Characteristics graph.) In this situation, connect the breeder resistance and load in a parallel formation like in the diagram below. If load voltage is above 5mA make residual voltage less than load reset voltage. The breeder resistance value and allowable power are calculated using the below calculation.

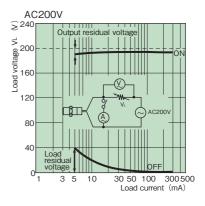

To be on the safe side, it is recommended to use $20k\,\Omega$ 1.5W (3W) and above at AC100V, $39k\,\Omega$ 3W (5W) and above at AC200V.

* When the effect from heat build up becomes a problem, use the wattage in () and above.

 $R \leq \frac{V}{5-i} (k\Omega)$ $P \leq \frac{V^2s}{5-i}$ (mW)

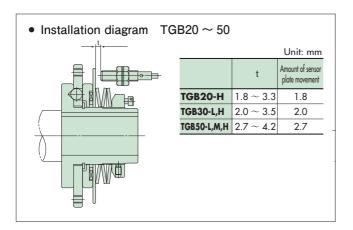
P : Breeder resistance W number (As a practical matter, use the number of W several times or more)



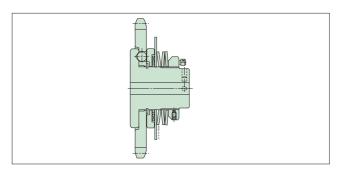


• The large inrush current load

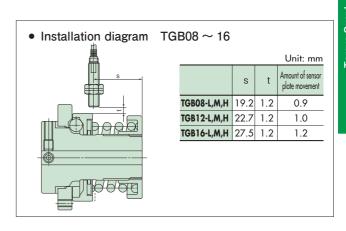
A load with large inrush current such as a lamp or motor can cause damage or deterioration to openclose elements of the sensor. In this type of situation, use the sensor via a relay.

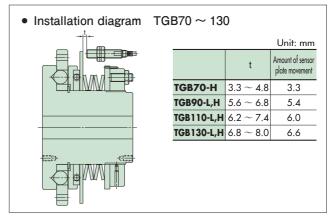

Consumption (leakage) Current Characteristics

Overload detection TG Sensor handling

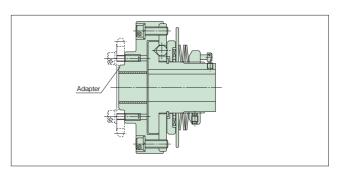

- The detecting distance of a TG Sensor is 1.5mm. Set the Torque Guard at non-trip condition with the dimensions (s, t) in the chart below.
- Install the TG Sensor at the tripped position. Then, while rotating the Torque Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Torque Guard.

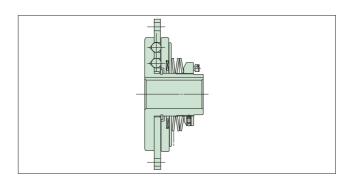
Special specifications


1. With sprocket type


We accept orders for with the sprocket the type that are not included among our standard products. Contact Tsubaki Emerson to help you with your selection.

3. Forward-reverse type


Depending on Torque Guard rotation direction, the trip torque set value can be changed. Contact TEM for more information.



2. Adapter specifications

It is convenient to use sprockets and pulleys with a small outside diameter. Contact Tsubaki Emerson for more information on the sprocket and pulley you will install.

Torque Guard TGX Series

Features

Non-backlash. Provides superb rigidity during normal operation. Ideal for applications that require highly accurate positioning.

Highly accurate trip

The lost motion during trip is very small. Accuracy of consecutive repeated trip torque fluctuations is within $\pm 3\%$.

Non-backlash

Due to its innovative ball and wedge construction (PAT.), there is almost no backlash.

Coupling function

For the coupling, the ball and wedge construction absorbs the angle, parallel and axial displacement misalignment.

One position

The unique assembly of the TGX Series means the ball and wedge configuration engages in only 1 position.

Easy torque adjustment

Just by turning the adjusting nut, trip torque can be freely adjusted.

Verifying set torque

The easy to read rpm and angle indicators makes verifying the torque setting easy.

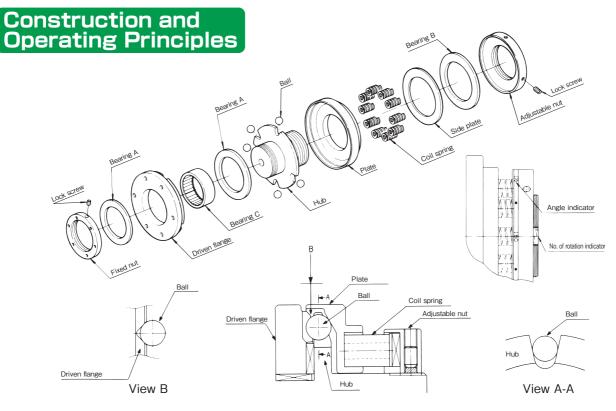
Standard type overload detection sensor

It can detect overload by the non-contact type TG Sensor (refer to pages 28, 29),and stop the motor or output an alarm.

Standard stock

Rough bores are a stock item

Bore finishing for quick delivery

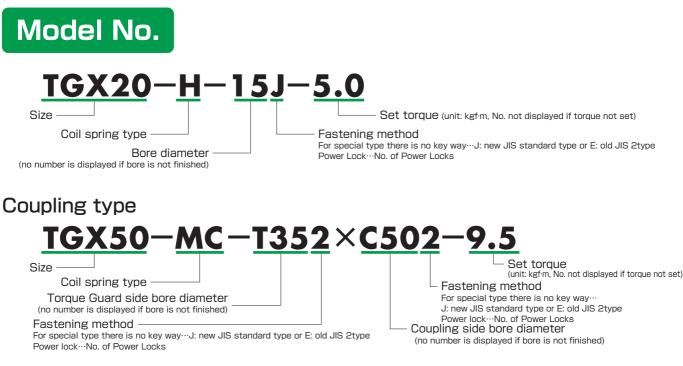

Finished bore products can be made for quick delivery. (Refer to page 35)

TG Sensor

Ball and Wedge Mechanism

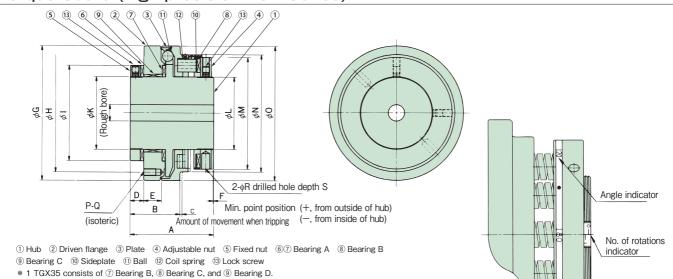
Torque transmission is transmitted from the hub \rightarrow steel ball \rightarrow driven flange. (As well as the reverse direction.) Due to the force of the coil spring, the steel ball is retained in between the hub and driven flange, and the contact portion of the metal balls are tapered, and the clearance between the steel balls and V-shape retaining portions are always zero. (View A-A)

In addition, because of the 2 points contact of steel balls with the driven flange at V-shaped pocket, there is no backlash. (View B)


This mechanism is a ball and wedge mechanism (PAT.).

During overload the steel balls pop out from their pockets and start rolling.

Because of this not sliding but all rolling mechanism, the friction torque when idling is extremely small and it is a highly durable mechanism.


Reset is carried out by an automatic reset system. As operation is resuming, the steel ball resets to its pocket.

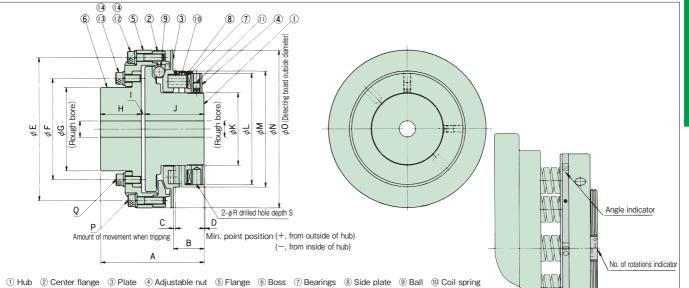
As well as the TGB Series, the non-symmetric arrangement of the 5 steel balls and pockets allow only one engagement position, and there is no phase shift.

Transmissible Capacity/Dimensions Table

Torque Guard (high precision TGX Series)

* 2 TGX10 does not have 67 Bearing A and 9 Bearing. Only the ball is set. (35 piecesX2lines) * 3 Adjustable nut for fixing the lock screw (1) is included with the Torque Guard. After setting appropriate torque, tighten with the following torque to avoid interference with the hub's pocket.

Lock screw size: TGX10 $\sim 35~\text{M5}^{-13.8}\text{N}^{-13.8}\text{M}^{-13.8$


													Un	it : mm
Torque Guard Model No.	Set torque range N·m {kgf·m}	Max. ※r/min	Coil spring color×number	Rough bore diamter	≫ Max. bore diameter	A	В	C amount of movement during trip	D	E	F min. point position	G h7	H PCD	I
TGX10-L	$1.7 \sim 6.4 0.17 \sim 0.65 $		Yellow × 3											
TGX10-M	5.4 ~ 15 \0.55 ~ 1.5	1400	Red × 3	7	15	53	22	1.4	7.5	6.6	+0.3	62	54	42
TGX10-H	$11 \sim 29 \ 1.1 \sim 3.0 $		Red × 6											
TGX20-L	$6.5 \sim 24 \; 0.66 \sim 2.4 $		Yellow × 6											
TGX20-M	13 ~ 34 1.3 ~ 3.5	1100	Red × 3	8.5	25	64	35	1.6	10	13.4	+0.7	86	74	60
TGX20-H	25 ~ 68 2.6 ~ 6.9		Red × 6											
TGX35-L	23 ~ 68 2.3 ~ 6.9		Red × 5											
TGX35-M	43~98 (4.4~10)	800	Green × 5	12	35	68	37.5	2.0	11	11.6	- 0.5	107	88	70
TGX35-H	87~196 (8.9~20)		Green × 10											
TGX50-L	45~118 4.6~12		Red × 5											
TGX50-M	90~196 (9.2~20)	600	Green × 5	18	55	92	54.8	2.6	15	19.5	+ 0.3	148	130	105
TGX50-H	176 ~ 392 [18 ~ 40]		Green × 10											
TGX70-L	127 ~ 363 [13 ~ 37]		Red × 8											
TGX70-M	265 ~ 510 27 ~ 52	480	Green × 8	23	70	98	61	3.5	15	19.2	+ 1.0	185	164	135
TGX70-H	392 ~ 784 40 ~ 80		Green × 12	1										

Torque Guard Model No.	K diameter x pitch	L diameter x pitch	м	И	0	Ρ	Q screw diamter × length	R	S	жMass kg	≫Inertia moment ×10 ⁻² kg·m²		
TGX10-L													
TGX10-M	M25 x 1.5	M30 x 1.5	56	58	61.8	4	M 4× 6	5	10	0.75	0.0293	0.117	
TGX10-H													
TGX20-L													
TGX20-M	M40 x 1.5	M40 x 1.5	70	73	86	6	M 5× 8	5	10	1.67	0.134	0.535	
TGX20-H													
TGX35-L													
TGX35-M	M50 x 1.5	M55 x 1.5	88	91	107	6	M 6× 7	6	10	2.51	0.333	1.33	
TGX35-H													
TGX50-L													
TGX50-M	M80 x 1.5	M80 x 1.5	123	129	148	6	M 8×13	9	17	7.03	1.83	7.32	
TGX50-H													
TGX70-L													
TGX70-M	M100 x 2.0	M100 x 2.0	148	153	185	6	M10×13	10	18	11.4	4.88	19.5	
TGX70-H													

%In the case instantaneous stop after tripping by sensor is available, it can be used higher than maximum speed (must be within 3000r/min). Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 56)

*Mass, inertia moment and GD² are based on the bores' maximum diameters.
*Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 38.

Torque Guard Coupling

(1) Lock screw (2) Hexagonal bolt (3) Hexagonal bolt (4) Spring washer

* Adjustable nut for fixing the lock screw (1) is included with the Torque Guard. After setting appropriate torque, tighten with the following torque to avoid interference with the hub's pocket. Lock screw size: $TGX10 \sim 35 M5 \cdots 3.8N \cdot m[38.7kgf \cdot cm] TGX50/70 M8 \cdots 16N \cdot m[163kgf \cdot cm]$

														Unit	: mm
Torque Guard	Set torque range	≫ Max. r/	Coil spring	· · · · ·	ue Guard		oupling	А	В	с	D min. point	E	F	G	н
Model No.	N·m {kgf·m}	min	color×number	Rough bore diameter	≫ Max. bore diameter	Rough bore diameter	≫ Max. bore diameter	~	D	-	position	PCD	PCD		
TGX10-LC	1.5 ~ 5.4 0.15 ~ 0.55		Yellow × 3							1.3					
TGX10-MC	$4.6 \sim 13 \ \{0.47 \sim 1.3\}$	700	Red × 3	7	15	7	19	69	24		+ 0.3	62	42	33	25
TGX10-HC	9.3 ~ 25 0.95 ~ 2.6		Red × 6												
TGX20-LC	5.2~19 (0.53~1.9)		Yellow × 6	8.5	25		35	84	24		+ 0.3	89	66	55	35
TGX20-MC	$9.8 \sim 27 \ \{1.0 \sim 2.8\}$	550	Red × 3			8.5				1.6					
TGX20-HC	21~55 2.1~5.6	1	Red × 6]											
TGX35-LC	19~57 {1.9~5.8}		Red × 5	12	35		50			1.9	- 0.5	113		70	35
TGX35-MC	$36 \sim 84 \ 3.7 \sim 8.6 $	400	Green × 5			12		88	24				83		
TGX35-HC	74 ~ 167 (7.5 ~ 17)	1	Green × 10]											
TGX50-LC	40~98 {4.1~10}		Red × 5												
TGX50-MC	81 ~ 176 (8.3 ~ 18)	300	Green × 5	18	55	18	60	114	34	2.4	+ 0.9	158	112	92	45
TGX50-HC	$ 167 \sim 343 17 \sim 35 $	1	Green × 10]											
TGX70-LC	$118 \sim 323 \left\{ 12 \sim 33 \right\}$		Red × 8												
TGX70-MC	235 ~ 461 {24 ~ 47}	240	Green × 8	23	70	23	80	124	36	3.3	+ 0.6	200	145	116	50
TGX70-HC	353 ~ 696 {36 ~ 71}		Green × 12												

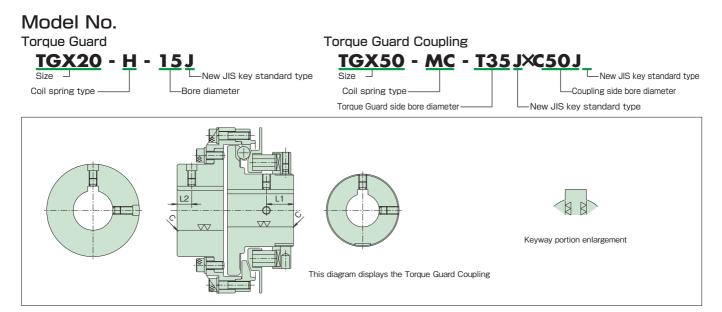
Torque Guard Model No.	I	J	K diamter × pitch	L	м	И	0	P screw diameter × length	Q screw diameter × length	R	S	* Mass kg	∦ Inertia moment ×10 ⁻² kg·m²	%GD ² ×10 ⁻² kgf⋅m ²	Allowable angular mis- alignment (deg.)	Allowable parallel misalignment	Allowable shaft direction displacement	
TGX10-LC																		
TGX10-MC	2	42	M 30×1.5	56	-	74	74	M 4×18	M 4×10	5	10	1.07	0.0555	0.222	0.6	0.1	±0.5	
TGX10-HC																		
TGX20-LC		46																
TGX20-MC	3		46	46	46	M 40×1.5	70	-	98	98	M 5×20	M 5×12	5	10	2.38	0.231 0.924	0.6	0.1
TGX20-HC																		
TGX35-LC																		
TGX35-MC	3	50	M 55×1.5	88	-	125	125	M 6×25	M 6×15	6	10	3.92	0.663	2.65	0.6	0.1	±0.5	
TGX35-HC																		
TGX50-LC																		
TGX50-MC	4	65	M 80×1.5	123	128	174	174	M 8×32	M 8×20	9	17	10.9	3.35	13.4	0.6	0.1	±0.6	
TGX50-HC																		
TGX70-LC																		
TGX70-MC	4	70	M100×2.0	148	152	218	218	M10×22	M10×38	10	18	16.3	8.93	35.7	0.6	0.1	±0.7	
TGX70-HC																		

*In the case instantaneous stop after tripping by sensor is available, it can be used higher than maximum speed (must be within 3000r/min). Instantaneous stop is not possible, TGXZ Series is recommended. (Refer to page 56)

*Mass, inertia moment and GD2 are based on the bores' maximum diameters.
*Maximum bore diameter is with key installation. In case of Power-Lock installation, refer to p 38.

Torque Guard TGX, and Torque Guard Coupling TGX-C with Finished Bore

Finished bore products can be made for quick delivery


Bores and keyways are already finished before delivery.

The finished bores for TGX10 \sim TGX70 and TGX10-C \sim TGX70-C are standard.

Finished Bore Dimension Chart

Torque G	Juard TGX	Bore	dimensions			
Torque Guard Model No.	Torque Gard Coupling Model No.	Torque Guard Side	Coupling side (Torque Guard Coupling only)			
TGX10	TGX10-C	(10),(11),12,14,15	10,11,12,14,15,16,17,18,19			
TGX20	TGX20-C	(14),(15),(16),(17),18,19,20,22,24,25	10,11,12,14,15,16,17,18,19,20,22,24,25,28,29, 30,32,33,35			
TGX35	TGX35-C	(14),(15),(16),(17),18,19,20,22,24,25, 28,29,30,32,33,35	14,15,16,17,18,19,20,22,24,25,28,29,30,32,33, 35,36,38,40,42,43,45,46,48,50			
TGX50	TGX50-C	20,22,24,25,28,29,30,32,33,35,36,38,40, 42,43,45,46,48,50,52,55	20,22,24,25,28,29,30,32,33,35,36,38,40,42,43, 45,46,48,50,52,55,56,57,60			
TGX70	TGX70-C	25,28,29,30,32,33,35,36,38,40,42,43,45, 46,48,50,52,55,56,57,60,63,65,70	25,28,29,30,32,33,35,36,38,40,42,43,45,46,48, 50,52,55,56,57,60,63,65,70,71,75,80			
Del	ivery	EXJapan 4 weeks by sea				

1. Finished bore dimensions with () at Torque Guard side are applied only for Torque Guard Coupling.

Torque Guard TGX		Tor	que Guard s	ide	Coupling side (Torque Guard Coupling only)			
Torque Guard Model No.	Torque Guard Coupling Model No.	Coupling Bore Set screw position		Bore diameter	Set screw	Set screw position L2		
TGX10	TGX10-C	ϕ 15 and below	2-M4×4	21	ϕ 19 and below	2-M4×4	8	
TGX20	TGX20-C	ϕ 23 and below	2-M5×5	20.5	φ 35 and below	2-M5×5	12	
10/20	10x20-C	φ 24,25	2-M4×4	20.5	ϕ so and below	Z-M3×3	12	
TGX35	TGX35-C	ϕ 35 and below	2-M6×6	20.5	ϕ 50 and below	2-M6×6	11	
TGX50	TGX50-C	ϕ 55 and below	2-M6×6	24.5	ϕ 60 and below	2-M6×6	13	
TGX70	TGX70-C	ϕ 70 and below	2-M6×6	25	ϕ 80 and below	2-M6×6	15	

1. Set screws are located at 2 positions, on the keyway and 90° CW from it.

2. For Torque Guard Couplings, only the TGX10-C has a different keyway phase between the Torque Guard side and the coupling side.

Bore diameter and keyway specifications

Unit[,] mm

- Bore diameter tolerance is as follows: ϕ 18 and below……0 ~ +0.021mm
- ϕ 19 and above……H7 \cdot Keyway is New JIS (JIS B 1301-1996)
- "standard".
- \cdot Set screws are included in the delivery.

Bore diameter	Chamfer dimensions
ϕ 25 and below	C0.5
ϕ 50 and below	C1
ϕ 51 and above	C1.5

Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

1. Setting trip torque

$T_{P} = T_{L} \times S.F = \frac{60000 \times P}{2\pi \cdot n} \times S.F \left T_{P} = \frac{974 \times P}{n} \times S.F \right $									
$T_{P} = Trip torque N \cdot m\{kgf \cdot m\}$	T_{L} = Load torque $N \cdot m\{kgf \cdot m\}$								
P = Transmittance power kW	S.F = Service factor								
n = rpm r/min									

- (1) From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1

Service factor	Operating conditions
1.25	In the case of normal start up/stop, intermittent operation
1.50	In the case of a heavy shock load or forward-reverse driving

2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$\begin{array}{ll} K = \frac{I_{L} + I_{t}}{I_{S}} & \left\{ K = \frac{GD_{L}^{2} + GD_{t}^{2}}{GD_{s}^{2}} \right\} & Tt = \frac{K \cdot T_{S} + T_{L}}{1 + K} & Tp = SF \cdot Tt \\ K & : Inertia ratio \end{array}$$

 I_s : Drive side inertia moment $(kg \cdot m^2)$

Handling

1. Setting trip torque

- (1) TGX Torque Guards are all set at the $"0"\ {\rm point}$ (minimum torque value) for delivery. Confirm that the torque indicator is set at "0" when you receive the Torque Guard. (Refer to pages 33, 34)
- (2) From the "Tightening Amount Torque Correlation Chart" (below), find the adjusting nut's (bolt) tightening angle equivalent to the predetermined trip torque. The torque indicator is at every 60° pitch. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum

Tightening Amount-Torque Correlation Chart

- $\{GD_s^2 : Drive side GD^2 (kgf \cdot m^2)\}$
- : Load side inertia moment (kg·m²) - h
- $\{\mathbf{GD}_{L}^{2}: \text{load side } \mathrm{GD}^{2} \ (\text{kgf} \cdot \mathbf{m}^{2})\}$
- : Torque Guard inertia moment (kg·m²)
- $\{GD_t^2: \text{Torque Guard GD}^2 \ (kgf \cdot m^2)\}$
- T_s : Motor starting torque $(N \cdot m) \{ kgf \cdot m^2 \}$
- : Torque in Torque Guard during start up (N·m) {kgf·m²} T. T
 - : Load torque (N·m){kgf·m}
- : Trip torque (N·m) {kgf·m} S.F. : Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD² and torgue value.

3. Precautions when deciding trip torque

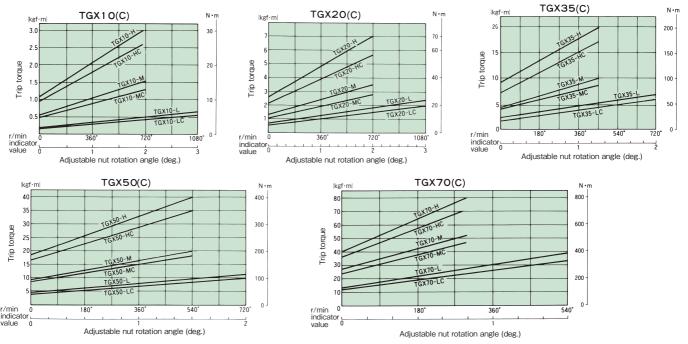
Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

Verifying bore diameter

Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.


If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

6. Confirming rpm

Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.

trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use these values only as a rough guide.

- (3) After setting torque, screw the lock screw to the adjusting nut.
- (4) Do not turn the adjusting nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend. Refer to page 27 for the lock screws' tightening torque and precautions.

Centering method

(1) Centering method I

- a. Separate the flange from the hub and center flange.
- Move the flange, then set to the I dimensions shown in b. Table 1.
- c. Fix a dial gauge to the hub (coupling side hub), then $_\mathsf{TGX20-C}$ measure the run-out of the hub's end face and outer circumference.

(2) Centering method II

- a. Separate the flange and the center flange.
- b. Fix a dial gauge to the shaft, then measure the run-out of the hub's end face and outer circumference.
- Move the boss (coupling side hub), then set to the I с. dimensions shown in Table 1.

	Make sure to secure it using the I dimensions in
Note	Table 1, otherwise the Torque Guard can not be
	used because backlash will occur.

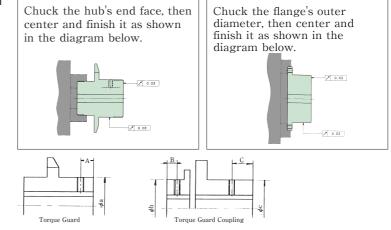
Allowable Misalignment

Allowable	Allowable Misalignment Unit: mm										
Model No.	Allowable angular misalignment deg.	Allowable parallel misalignment	Allowable axial misalignment								
TGX10-C	0.6	0.1	±0.5								
TGX20-C	0.6	0.1	±0.5								
TGX35-C	0.6	0.1	±0.5								
TGX50-C	0.6	0.1	±0.6								
TGX70-C	0.6	0.1	±0.7								

Maintenance

Lightly grease the balls and bearings once per year or every 1,000 trips.

Grease

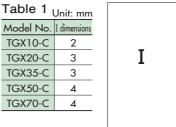

Exxon Mobil	Showa Shell	Japan-Energy	Idemitsu	Nippon Oil Corporation	Cosmo Oil
Mobilux EP2	Alvania EP Grease 2	RIZODICS EP 7	Daphny Eponex Grease EP 2	Epinoc Grease AP(N)2	Cosmo Dynamax EP Grease 2

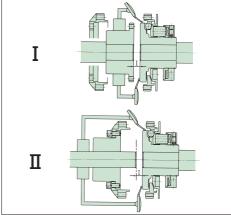
Bore finishing

Refer to the instruction manual for more information on Torque Guard TGX and Torque Guard Coupling TGX-C disassembly for bore finishing, finishing and assembly.

Bore Keyway Set Screw Dimensions

Dimensions Model No.	A x screw diameter	B x screw diameter	C x screw diameter	a	b	с
TGX10	21 ×M5 and below			30		_
TGX20	20.5×M5			40	_	_
TGX35	20.5×M6			55		—
TGX50	24.5×M6			80	-	_
TGX70	26 × M6			100		_
TGX10-C		$8\!\times\!M$ 4 and below	21 ×M5 and below	_	33	30
TGX20-C		$12{\times}M$ 8 and below	20.5×M5	_	55	40
TGX35-C		$11\!\times\!M10$ and below	20.5×M6	_	70	55
TGX50-C		13×M10 and below	24.5×M6	_	92	80
TGX70-C		$15{\times}\text{M10}$ and below	25.2×M6	_	116	100




Overload Detection

TG Sensor Installation

• The detecting distance of a TG Sensor is 1.5mm. Set the Torque Guard in a non-trip condition with the dimensions (s, t) in the chart below. • Install the TG Sensor with the Torque Guard at the tripped position. Then, while rotating the Torque Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Torque Guard.

Installation	÷.	Dimensions			Unit: mm		lation	Dimensions			Unit: mm
diagram TGX Series	· ·	Model No.	S	t	Amount of plate movement	diagra		Model No.	S	t	Amount of plate movement
	. 1	TGX10	29.9	1.2	1.4	Series	15-1 12-11	TGX10-C	36.5	2.1~2.8	1.3
	100 5 100	TGX20	28.3	1.2	1.6		Take of Alla	TGX20-C	45	2.4~3.1	1.6
		TGX35	29.5	1.2	2.0			TGX35-C	59	2.7~3.4	1.9
		TGX50	35.6	1.2	2.6			TGX50-C	83	3.2~3.9	2.4
		TGX70	34.5	1.2	3.5		1000 CT	TGX70-C	105	4.1~4.8	3.3
	REAP	the To	orque G	or which Juard can ne radial o			Tor	I reccomends that que Guard Coupli zontal direction. One case you want	ng sho Contac	uld be insta t TEM for a	led in a consultation

For reference: Hub end face run-out per angular misalignment $\theta = 0.10^{\circ}$ Unit: mm

Model No.	Outside diameter	Hub end face run-out
TGX10-C	φ 53	0.092
TGX20-C	φ75	0.131
TGX35-C	<i>φ</i> 98	0.171
TGX50-C	φ138	0.241
TGX70-C	φ177	0.309

* Make angular misalignment as small as possible when installing the Torque Guard.

Combination with a Power Lock

1. Applicable range and Transmissible torque

It is possible to combine Torque Guards and Torque Guard Couplings with the Power Locks listed below. TEM will also supply a Torque Guard combined with a Power Lock and special pressure flange and bolts upon request. The chart shows Power Lock transmissible torque for a single set. In the case of multiple sets, multiply by the coefficient below to get the transmissible torque.

Ν	S	N S
2	1.55	(I
3	1.85	

N = Line Power Lock sets

= coefficient

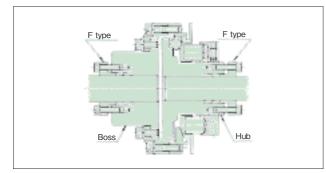

Example) In case the shaft diameter of 10 mm and 2 sets of Power Locks for TGX20 $1.10 \times 1.55 = 1.705$ about 1.70kgf·m

N·m {kgf·m}

(1) Torgue Guard TGX

Adjustable nut side

Power Lock transmissible torque


Model No. of Touque Guard Power Lock TGX10 TGX20 TGX35 TGX50 TGX70 Fixed Adjustable Fixed Adjustable Fixed Adjustable Fixed Adiustable Fixed Adjustable Model No. nut side 10 PL010×013E 12 PL012×015E 13 PL013×016E 14 PL014×018E 30.4 3.10 15 PL015×019E 16 PL016×020E 17 PL017×021E 18 PL018×022E 19 PL019×024E 44.1 44.1 20 PL020×025E 22 PL022×026E 24 PL024×028E 25 PL025×030E 28 PL028×032E 30 PL030×035E 141 |14.4 141 PL032×036E 32 35 PL035×040E 36 PL036×042E 38 PL038×044E PL040×045E 40 42 PL042×048E 45 PL045×052E 48 PL048×055E PL050×057E 50 419 55 PL055×062E 56 PL056×064E PL060×068E 60 63 PL063×071E 65 PL065×073E 70 PL070×079E

Pressure bolt tightening torque

. .

		11 1151	iteim	ng to	que					N•m{	kgf•m}
Во					Mode	l No. of	Touque (Guard			
re dia	Power Lock	TG)	(10	TG	K20	TG	K35	TG	K50	TG	X70
Bore diameter	Model No.			Adjustable		Adjustable		Adjustable		Adjustable	
ę			nut side		nut side	nut side	nut side				
10	PL010×013E	2.94 0.30		1.96 0.20	1.96 0.20						
12	PL012×015E	3.14 0.32		2.06	2.06						
13	PL013×016E			2.16	2.16						
14	PL014×018E			3.53 0.36	3.53 0.36						
15	PL015×019E			3.92 0.40	3.92 0.40	2.94 0.30	5.00 0.51				
16	PL016×020E			4.02 0.41	4.02 0.41	3.04 0.31	5.10 0.52				
17	PL017×021E			4.02 0.41	4.02 0.41	3.14 0.32	5.19 0.53				
18	PL018×022E			4.02 0.41	4.02 0.41	3.23 0.33	5.39 0.55				
19	PL019×024E			4.02 0.41	4.02 0.41	3.63 0.37	6.17 0.63				
20	PL020×025E			4.02 0.41	4.02 0.41	3.72 0.38	6.37 0.65	5.49 0.56	5.49 0.56		
22	PL022×026E					3.72 0.38	6.27 0.64	5.59 0.57	5.59 0.57		
24	PL024×028E					3.92 0.40	6.66 0.68	5.59 0.57	5.59 0.57		
25	PL025×030E					4.02 0.41		6.27 0.64	6.27 0.64	5.00 0.51	5.00 0.51
28	PL028×032E					4.02 0.41		6.47 0.66	6.47 0.66	5.19 0.53	5.19 0.53
30	PL030×035E					4.02 0.41		7.06 0.72	7.06 {0.72}	5.59 0.57	5.59 0.57
32	PL032×036E					4.02 0.41		7.35 0.75	7.35 0.75	5.88 0.60	5.88 0.60
35	PL035×040E					4.02 0.41		9.11 0.93	9.11 {0.93}	7.25	7.25 0.74
36	PL036×042E							9.51 0.97	9.51 {0.97}	7.64	7.64 0.78
38	PL038×044E							9.90 1.01	9.90 1.01	7.94 0.81	7.94
40	PL040×045E							11.7 1.19	11.7 1.19	9.31 0.95	9.31 0.95
42	PL042×048E							12.3 1.26	12.3 1.26	9.80 [1.00]	9.80 1.00
45	PL045×052E							13.7 1.40	13.7 1.40	13.7 1.40	13.7 1.40
48	PL048×055E							13.7 1.40	13.7 {1.40}	13.7 1.40	13.7 {1.40}
50	PL050×057E							13.7 1.40	13.7 1.40	13.7 1.40	13.7 {1.40}
55	PL055×062E									13.7 1.40	13.7 {1.40}
56	PL056×064E									13.7 1.40	13.7 {1.40}
60	PL060×068E									13.7 1.40	13.7 {1.40}
63	PL063×071E									13.7 1.40	13.7 {1.40}
65	PL065×073E									13.7 1.40	13.7 {1.40}
70	PL070×079E									13.7 1.40	13.7 {1.40}

(2) Torgue Guard Coupling TGX-C

Power Lock transmissible torque

N•m {kgf•m}

	Bore					Model	No. of	Touque	Guard			
	re di	Power Lock	TGX	10-C	TGX	20-C	TGX	35-C	TGX	50-C	TGX	70-C
	diameter	Model No.	Torque Guard	Coupling	Torque Guard	Coupling	Torque Guard	Coupling	Torque Guard	Coupling	Torque Guard	Coupling
l	ter		side	side	side	side	side	side	side	side	side	side
	10	PL010×013E	10.8 {1.10}	10.8 {1.10}	10.8 {1.10}	10.8 {1.10}						
	12	PL012×015E	15.7 1.60	15.7 1.60	15.7 1.60	15.7 1.60						
	13	PL013×016E			18.6 1.90	18.6 1.90						
	14	PL014×018E			30.4 3.10	30.4 3.10						
	15	PL015×019E			35.3 3.60	35.3 3.60	35.3 3.60	35.3 3.60				
	16	PL016×020E			39.2 4.00	39.2 [4.00]	40.2 [4.10]	40.2 4.10				
I	17	PL017×021E			43.1 4.40	43.1 4.40	45.1 4.60	45.1 4.60				
	18	PL018×022E			46.1 4.70	46.1 4.70	51.0 5.20	51.0 5.20				
	19	PL019×024E			41.2 4.20	41.2 4.20	56.8 5.80	56.8 5.80				
1	20	PL020×025E			44.1 4.50	44.1 4.50	62.7 6.40	62.7 6.40	62.7 6.40	62.7 6.40		
I	22	PL022×026E					75.5	75.5	75.5	75.5		
	24	PL024×028E					90.2 9.20	90.2 9.20	90.2 9.20	90.2 9.20		
	25	PL025×030E					91.1 9.30	91.1 9.30	98.0 10.0	98.0 10.0	98.0 10.0	98.0 10.0
	28	PL028×032E					111 11.3	111 {11.3}	123 12.5	123 12.5	123 12.5	123 12.5
1	30	PL030×035E					115 11.7	115 {11.7}	141 14.4	141 14.4	141 14.4	141 {14.4}
1	32	PL032×036E					124	124 12.7	160 16.3	160 16.3	160 16.3	160 16.3
	35	PL035×040E					127 13.0	127 13.0	217	217	217	217 22.1
	36	PL036×042E							229 23.4	229 23.4	229 23.4	229 23.4
	38	PL038×044E							256 26.1	256 [26.1]	256 [26.1]	256 26.1
1	40	PL040×045E							312 31.8	312 31.8	312 31.8	312 31.8
I	42	PL042×048E							344 35.1	344 35.1	344 35.1	344 35.1
I	45	PL045×052E							366 37.3	366 37.3	490 50.0	490 {50.0}
	48	PL048×055E							398 40.6	398 40.6	530 54.1	530 54.1
	50	PL050×057E							419 42.8	419 42.8	557 56.8	557 56.8
I	55	PL055×062E									624 63.7	624 63.7
I	56	PL056×064E									590 60.2	590 60.2
I	60	PL060×068E									644 65.7	644 65.7
	63	PL063×071E									685 69.9	685 69.9
	65	PL065×073E									711	711
I	70	PL070×079E									724	724

Pre	ssure bo	lt tigł	ntenir	ng to	rque					N•m {	kgf•m}
Bore					Mode	l No. of	Touque	Guard			
re dia	Power Lock	TGX	10-C	TGX	20-C	TGX	35-C	TGX	50-C	TGX	70-C
diameter	Model No.										Coupling
er		side	side	side	side	side	side	side	side	side	side
10	PL010×013E	2.94 0.30	2.94 0.30	1.96 0.20	1.96 0.20						
12	PL012×015E	3.14 0.32	3.14 0.32	2.06 0.21	2.06 0.21						
13	PL013×016E			2.16	2.16 0.22						
14	PL014×018E			3.53 {0.36}	3.53 0.36						
15	PL015×019E			3.92 0.40	3.92 0.40	2.94 0.30	2.94 0.30				
16	PL016×020E			4.02 {0.41}	4.02 0.41	3.04 {0.31}	3.04 {0.31}				
17	PL017×021E			4.02 {0.41}	4.02 0.41	3.14 0.32	3.14 0.32				
18	PL018×022E			4.02 {0.41}	4.02 0.41	3.23 0.33	3.23 0.33				
19	PL019×024E			4.02 {0.41}	4.02 {0.41}	3.63 0.37	3.63 0.37				
20	PL020×025E					3.72 0.38	3.72 {0.38}	5.49 0.56	5.49 0.56		
22	PL022×026E					3.72	3.72 0.38	5.59 0.57	5.59 0.57		
24	PL024×028E					3.92 0.40	3.92 0.40	5.59 0.57	5.59 0.57		
25	PL025×030E					4.02 0.41	4.02 {0.41}	6.27 0.64	6.27 0.64	5.00 0.51	5.00 0.51
28	PL028×032E					4.02 0.41	4.02 {0.41}	6.47 0.66	6.47 0.66	5.19 0.53	5.19 0.53
30	PL030×035E					4.02 0.41	4.02 0.41	7.06 {0.72}	7.06 [0.72]	5.59 0.57	5.59 0.57
32	PL032×036E					4.02 0.41	4.02 0.41	7.35 0.75	7.35 0.75	5.88 0.60	5.88 0.60
35	PL035×040E					4.02 0.41	4.02 0.41	9.11 0.93	9.11 0.93	7.25 0.74	7.25 0.74
36	PL036×042E							9.51 0.97	9.51 0.97	7.64 0.78	7.64 0.78
38	PL038×044E							9.90 {1.01}	9.90 {1.01}	7.94	7.94 0.81]
40	PL040×045E							11.7 {1.19}	11.7 {1.19}	9.31 0.95	9.31 0.95
42	PL042×048E							12.3 {1.26}	12.3 [1.26]	9.80 [1.00]	9.80 1.00
45	PL045×052E							13.7 {1.40}	13.7 {1.40}	13.7 {1.40}	13.7 {1.40}
48	PL048×055E							13.7 {1.40}	13.7 {1.40}	13.7 {1.40}	13.7 1.40
50	PL050×057E							13.7 {1.40}	13.7 {1.40}	13.7 1.40	13.7 {1.40}
55	PL055×062E									13.7 {1.40}	13.7 {1.40}
56	PL056×064E									13.7 {1.40}	13.7 1.40]
60	PL060×068E									13.7 {1.40}	13.7 1.40
63	PL063×071E									13.7 1.40	13.7 1.40
65	PL065×073E									13.7 {1.40}	13.7 {1.40}
70	PL070×079E									13.7 1.40	13.7 1.40]

2. Rough bore pressure flange

Special pressure flange and pressure bolts are MTO upon request.

Special pressure bolts are JIS Strength Class 10.9.

Pressure flange is installed with tap holes at the hub or boss (coupling side hub) end faces.

Refer to page $40\ {\rm for}$ the recommended finished dimensions.

Rough Bore Pressure Flange Dimensions

Pressure flange Model No.	А	Rougi measur B	n bore ements C	D	E	F	G PCD	Н	J	*1 Mass kg	Inertia moment kg•m²	$\%2 \text{ GD}^2 \text{ kgf} \cdot \text{m}^2$	Pressure bo × the nur		Tap side screw effective depth
TGX10-F	30	14.9	10.1	5	6	11	22	4	4.5	0.037	0.043	0.173	M4×14ℓ	4	M4× 8ℓ
TGX20-F	40	24.8	10.1	6	6	12	32	6	4.5	0.080	0.150	0.600	M4×14ℓ	6	M4× 8ℓ
TGX35-F	55	39.8	15.1	6	6	12	47	8	4.5	0.16	0.598	2.39	M4×14ℓ	8	M4× 8ℓ
TGX50-F	81	56.8	20.2	7	10	17	69	8	6.6	0.53	4.240	16.96	M6×22ℓ	8	M6×12ℓ
TGX70-F	101	78.7	25.2	7	10	17	89	10	6.6	0.87	10.83	43.33	M6×22ℓ	10	M6×12ℓ
*1 *2 We	ight :	and G	D^2 are	tor	rothe	ar ac	1 set	of p	rocci	ire flar	and (max	hore) a	ind process	re ho	1+


%1,%2 Weight and GD^2 are together as 1 set of pressure flange (max. bore) and pressure bolt. Note: All products are MTO.

3. Pressure flange recommended finishing dimensions

(1) Centering

Chuck and center based on the flange external diameter. (Refer to the diagram on the right)

(2) Recommended dimensionsDepending on Power Lock size, choose the finishing dimensions from the chart below.

TGX Series

Torque Guard

Pressure flange centering and processing diagram

Bore diameter	Power Lock	TGX10) (C) F	TGX20	0 (C) F	TGX35	5 (C) F	TGX50) (C) F	TGX70	D (C) F
(mm)	Model No.	do _0_1	di +0.1	do _0_1	di +0.1	do _0_1	di +0.1 -0	do _0_1	di +0.1	do _0_1	di +0.1
10	PL010×013E	12.9	10.1	12.9	10.1						1
12	PL012 × 015E	14.9	12.1	14.9	12.1						1
13	PL013×016E			15.9	13.1		 		1		1
14	PL014×018E		8 8 8	17.9	14.1		- 		1		1
15	PL015 × 019E		1 1 1	18.9	15.1	18.9	15.1	18.9	15.1		1
16	PL016 × 020E		1 	19.9	16.1	19.9	16.1	19.9	16.1		1
17	PL017 × 021E		1 1 1	20.9	17.1	20.9	17.1	20.9	17.1		1
18	PL018 × 022E		1	21.9	18.1	21.9	18.1	21.9	18.1		1
19	PL019 × 024E		1	23.8	19.2	23.8	19.2	23.8	19.2		1
20	PL020 × 025E			24.8	20.2	24.8	20.2	24.8	20.2		1
22	PL022 × 026E		 			25.8	22.2	25.8	22.2		1
24	PL024 × 028E		I I I		1	27.8	24.2	27.8	24.2		1
25	PL025 × 030E		 		1	29.8	25.2	29.8	25.2	29.8	25.2
28	PL028 × 032E		: 		 	31.8	28.2	31.8	28.2	31.8	28.2
30	PL030 × 035E		1 1 1		1	34.8	30.2	34.8	30.2	34.8	30.2
32	PL032 × 036E		1 1 1		1	35.8	32.2	35.8	32.2	35.8	32.2
35	PL035 × 040E		1			39.8	35.2	39.8	35.2	39.8	35.2
36	PL036 × 042E		1		1		1 1 1	41.8	36.2	41.8	36.2
38	PL038 × 044E							43.8	38.2	43.8	38.2
40	PL040 × 045E		 		1			44.8	40.2	44.8	40.2
42	PL042 × 048E		I I I		1		1	47.8	42.2	47.8	42.2
45	PL045 × 052E		1					51.8	45.2	51.8	45.2
48	PL048 × 055E		1 1 1		1		: 1 1	54.8	48.2	54.8	48.2
50	PL050 × 057E		1 		1		 	56.8	50.2	56.8	50.2
55	PL055 × 062E		i I I		1					61.8	55.2
56	PL056 × 064E		1 1 1		1 1 1		 			63.8	56.2
60	PL060 × 068E		1 1 1		1 1 1		1 1 1		1 1 1	67.8	60.2
63	PL063 × 071E		1				1 1 1			70.8	63.2
65	PL065 × 073E		1		1		1 1 1			72.8	65.2
70	PL070 × 079E		1 1		1					78.7	70.3

Refer to the instruction manual for information on hub bore finishing when installing the Power Lock.

Features

Highly accurate sealed type. Excels in wet, oily and dusty environments.

Sealed construction

The sealed construction is highly resistant to dust, oil and water penetration, and oil leakage as well.

Highly accurate trip torque

Accuracy of consecutive repeated trip torque fluctuations is within $\pm 5\%$.

Single-position

Because the cam follower and pocket of the cam shaft engage together, there is no phase shift between the drive side and the driven side.

Non-backlash

There is no backlash.

Automatic reset

Long life

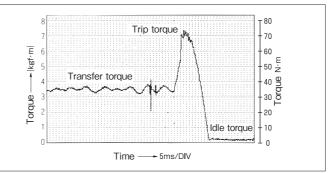
Can withstand more than one hundred thousand trips.

LS detection plate for overload detector

If the Torque Guard trips, the limit switch is actuated because the LS detection plate slides along the axial direction.

Simple torque adjustment

By simply turning the adjusting screw with a hexagonal Allen wrench, precise torque can be set.

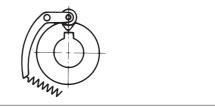

No greasing necessary

The Torque Guard TGM Series is packed in high quality grease before shipment, so greasing is not necessary.

High precision trip torque

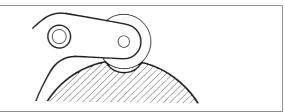
Accuracy of consecutive repeated trip torque fluctuations is within $\pm 5\%$.

One (1) high precision cam follower pressurizes tightly from the radial direction in the precisely machined pocket. A highly rigid and stable load rate rectangular spring is used. Trip movement is a rolling movement, so even a repeat trip produces almost no torque variation.

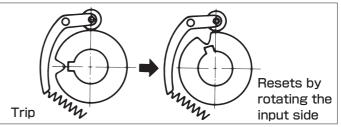


Sealed construction

Covered in a special aluminum alloy casing, the TGM Series is sealed, so it is almost impossible for dust, oil or water to penetrate it. Therefore, it does not affect trip torque precision, making it an ideal overload protection device.


Single-position

The cam follower and pocket engage together, so there is no phase shift between the drive and the driven sides.


Non-backlash

The cam follower and pocket's engagement is a 2 point contact pressed against each other, meaning there is no backlash.

Automatic reset

Once the cause of overload is removed, the Torque Guard automatically moves back to its original position by rotating the input side a little (at less than 50r/min), or by inching the motor.

Long life

The TGM Series is able to withstand more than one hundred thousand trips. Due to strong materials, thermal processing and precision machining, the cam follower and pocket can withstand even severe repeat trips and not collapse. During trip, the idling part uses a heavy-duty needle bearing, so there is almost no friction.

Guard

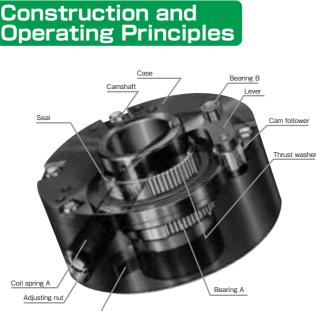
Torque TGM Series

LS detecting plate for overload detector

When the Torque Guard trips the LS detecting plate slides in the axial direction, so it is easy to actuate the limit switch, shut off the power or set off the alarm.

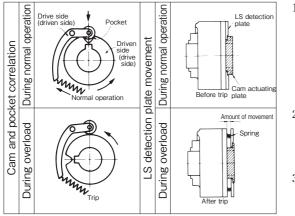
When tripping it can be used whether it stops on the camshaft side or the housing (Torque Guard case) side. The LS detecting plate can be mounted on all models.

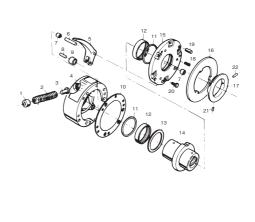
Easy to use


The camshaft and case can be used on either the drive or driven sides. As well, it can be used in either direction of rotation. For the drive member, you can choose between using a chain, pulley or gear. Assembling with a coupling is also possible. Refer to page 44 to see the assembly of a Torque Guard coupling with a roller chain coupling.

Torque setting is easy

By simply turning the adjusting screw with a hexagonal Allen Wrench, precise torque can be set. As well, the adjusting nut is on the outer surface of the Torque Guard, so torque setting can be done easily.

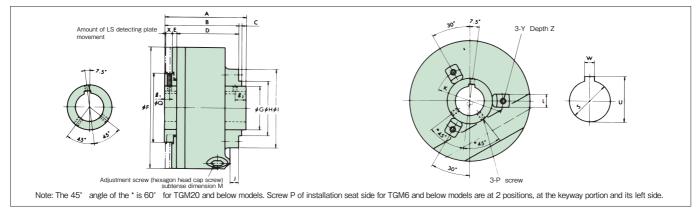

No need to lubricate


The Torque Guard TGM Series is packed in high quality grease before shipment, so greasing is not necessary.

Spring holder

- 1.The cam follower transmits torque by engaging with the camshaft pocket in a radial direction. When the machine is overloaded, the cam follower pops out of
- the pocket, and completely separates from the overload. 2.The cam follower pocket is precision machined and heat
- treated, so it is able to maintain high torque precision for extended periods of time.
- 3. The cam follower and pocket are non-backlash, with a 2-point contact system.
- 4.Using the leverage on one rectangular coil spring pressurizes the cam follower, so it is able to give high precision pressure.

Adjusting screw 2Coil spring A OSpring seat 4Case 6Lever 6Fulcrum pin Bearing B 8 Roller pin Ocam follower Gasket **D**Seal Bearing A Thrust washer Cam shaft Cover **G**LS detecting plate Cam actuation plate Coil spring B Opring pin Hexagonal bolt Hexagonal set screw Hexagonal set screw


- 5.Torque level is infinitely adjustable.
- 6.Due to overload, the idling during trip is received by 5 needle bearings, so there is no slide, and idling friction torque is minute.
- 7.Because the housing and cover are made from a solution treated aluminum, it has a light but strong construction.
- 8.Due to its sealed construction, it is highly difficult for dust,
- water or oil to penetrate the TGM Series. 9.If the Torque Guard trips because of overload, the LS detecting
- plate slides in the axis direction, so by operating the limit switch, overload detection is easy.
- 1.Torque is transmitted by the engagement of the cam follower and the pocket with a 2 point contact system.

The method to pressurize the cam follower to the cam pocket is to hold it by one rectangular coil spring in a radial direction. Therefore there is no backlash, allowing it to function as a high trip torque

Therefore there is no backlash, allowing it to function as a high trip torque precision overload protection device. Reset is carried out using an automatic reset system, so as the cam follower settles into its pocket position, operation resumes. As it is a two-point contact, there is no phase shift from the original position.

- 2.When overloaded, the cam follower comes out of its pocket and starts rolling on the outer diameter of the camshaft. As there is no slide section, the idling friction torque is small, making it a highly durable device. As well, the simple one position engagement construction of the TGM Series means its high trip torque precision does not diminish.
- 3.When the Torque Guard trips, the LS detecting plate slides in the axis direction. From this point, the limit switch can be actuated and the power can be turned off. The alarm can also be sounded. For each one trip, the LS detecting plate slides three times.

Dimensions

Transmissible capacity

Trans	smissible capa	city					l	Unit : mm
Model No.	Set torque range	Max. rpm	Bore	Stock bore diameter	Semi-standard bore diameter	Inertia moment	GD ²	Mass
Iviodel INO.	N∙m {kgf•m}	∦ r/min	range	H7	H7	$\times 10^{-2}$ kg·m ²	$ imes$ 10 $^{-2}$ kgf·m ²	kg
TGM3	$1.5 \sim 3.7 \ \{0.15 \sim 0.38\}$	600	10~14	14	10, 12	0.0425	0.17	0.6
TGM6	$2.5 \sim 6.4 \ 0.26 \sim 0.65 $	600	10~14	14	10, 12	0.0425	0.17	0.6
TGM20	6.4 ~ 20 {0.65 ~ 2.0}	500	$14 \sim 20$	20	14, 16, 18	0.168	0.67	1.1
TGM60	20~69 {2.0~7.0}	300	$20 \sim 30$	30	20, 22, 25, 28	0.938	3.75	2.5
TGM200	68 ~ 225 {6.9 ~ 23}	200	$28 \sim 50$	50	30, 35, 40, 45	4.03	16.1	5.4
TGM400	$225 \sim 451 \ \{23 \sim 46\}$	1 <i>5</i> 0	38 ~ 60	_	60	40.0	160	17.2
TGM800	$451 \sim 902 [46 \sim 92]$	1 <i>5</i> 0	38 ~ 60	_	60	40.0	160	17.2

%1. Cam shafts for semi-standard bore diameters are in stock for quick delivery.
2. Please contact TEM for a consultation if you want to use the Torque Guard at an rpm at or above the maximum speed.
3. The keyway is made with JIS1301-1996 (new JIS standard) dimensions.

Dimensions

Model No.	А	В	С	D	E	F	G	H h7	I	J	к	L	м	Р	Ø	l 1	l 2	S H7	U	W	Х	Y	Z
TGM3	60	57	2	48	3	80	22	30	50	3	40	8	5	M4	40	4	6	14	16.3	5	4	M 4	8
TGM6	60	57	2	48	3	80	22	30	50	3	40	8	5	M4	40	4	6	14	16.3	5	4	M 4	8
TGM20	70	66	3	57	3	100	30	40	60	4	50	10	6	M4	50	4	7	20	22.8	6	4	M 5	10
TGM60	89	81	3	68	5	133	47.6	60	86	7	73	14	12	M5	76	6	12	30	33.3	8	6	M 6	13
TGM200	110	100	3	85	5	178	69.9	82	133	14	114	20	12	M6	105	7	14	50	53.8	14	6	M10	19
TGM400	157	147	9	131	5	273	88.9	114	190	17	165	28	17	M8	124	7	16	60	64.4	18	8	M12	28
TGM800	157	147	9	131	5	273	88.9	114	190	17	165	28	17	M8	124	7	16	60	64.4	18	8	M12	28

*1.The model numbers in bold are stock items, and the rest are assembled for shipment. 2.The keyway is made with JIS1301-1996 (new JIS standard) dimensions. 3. Minimum torque is set temporariry when shipped

Semi-standard

1. Torque setting

If necessary, torque can be set at TEM's factory before shipment. Torque setting tolerance is within $\pm 5\%$. The set torque value is on the nameplate, and the adjusting nut is coated with Loctite 242, or its equivalent, and tightened. When ordering, indicate set torque value (kgf · m) after bore diameter. (Please refer to the table on the right)

2. Weak spring and strong spring specifications

For when it is necessary to operate with a trip torque other than the standard torque value range:

- (1) TGM6 and TGM800 do not have weak spring specifications.
- (2) The standard torque range can be replaced by the weak or strong spring torque ranges on the nameplate.
- (3) The minimum and maximum torque indicator on the nameplate does not change for the weak and strong springs.
- (4) When ordering, indicate weak spring (WS) or strong spring (SS) in the last part of the product number.

Model No.	Weak spring, torque range N·m {kgf·m}	Reinforced spring, torque range N·m {kgf·m}
TGM3(C)	$0.59 \sim 1.5 0.06 \sim 0.15 $	
TGM6(C)		$6.0 \sim 12.7 \left\{ 0.61 \sim 1.3 \right\}$
TGM20(C)	$3.7 \sim 12 \left\{ 0.38 \sim 1.2 \right\}$	$7.3 \sim 23 0.74 \sim 2.3 $
TGM60(C)	$7.6 \sim 26 \left\{ 0.78 \sim 2.7 \right\}$	$44 \sim 105 [4.5 \sim 10.7]$
TGM200(C)	30 ~ 98 {3.1 ~ 10}	$101 \sim 289 \{10.3 \sim 29.5\}$
TGM400(C)	$118 \sim 235 \{12 \sim 24\}$	
TGM800(C)		532 ~ 1060 {54.3 ~ 108}

I Init · mm

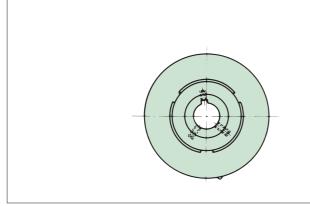
Model No.

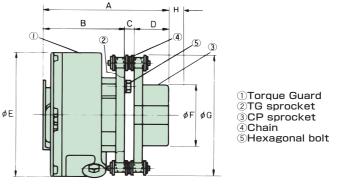
<u>TGM60 – D30 – WS – 2.5</u>

Size	Set to	Drque f·m. No. not displayed if torque
Bore diameter —	not set)	,
	Spring specifications	SS : Reinforced spring
		WS : Weak spring
	No	thing · Standard spring

Note 1) Bore diameter tolerance is H7, keyway is made with JIS1301-1996 (new JIS standard) dimensions.

2) In case trip torque is required to set before shipment, allowable tolerance of setting torque is $\pm 5\%$.




Torque Guard coupling-sprocket combination

Torque Guard coupling

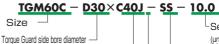
This is the Torque Guard and roller chain coupling combination series. It is a Torque Guard with high trip torque accuracy and an easy to use roller chain coupling, all in one. It is ideal for direct coupling between the drive and driven machines. (In the case it is coupled with a nonbacklash coupling, contact TEM for a consultation.)

Transmissible capacity/dimensions

H: The space necessary for inserting the joint link

																		Unit : mm
Torque	C	Max.	Torque	Guard bore	Coup	0											Inertia	22 ²
Guard Coupling	Set torque range	rpm	Standard bore diameter	Semi-standard bore diameter		ore	A	В	С	D	Е	F	G	н	sprocket	Mass kg	moment	GD ² ×10 ⁻² kgf·m ²
Model No.		∦ r/min	H7	H7	Rough bore diameter*1	diameter											×10 ⁻² kgf⋅m ²	
TGM3C	1.5 ~ 3.7 0.15 ~ 0.38	600	14	10,12	12.5	30	90	64.2	50	20	80	50	70	0	RS35-20	1.12	0.07	0.28
TGM6C	2.5 ~ 6.4 0.26 ~ 0.65	800	14	10,12	12.5	30	70	04.2	5.0	20	80	50	70	7	K355-20	1.12	0.07	0.28
TGM20C	6.4 ~ 20 0.65 ~ 2.0	500	20	14,16,18	12.5	32	100	72.2	5.8	22	100	53	82	7	RS35-24	1.78	0.218	0.87
TGM60C	20~69 {2.0~7.0}	300	30	20,22,25,28	12.5	42	120.6	88.2	7.4	25	133	63	117	17	RS40-26	4.15	1.21	4.81
TGM200C	$68 \sim 225 [6.9 \sim 23]$	200	50	30,35,40,45	18	55	163.3	111.7	11.6	40	178	83	188	26	RS60-28	11.8	6.80	27.5
TGM400C	225 ~ 451 23 ~ 46	1.50	_	60	28	75	221.9	161.6	15 2	45	272	107	251	20	RS80-28	31	50.8	203
TGM800C	451 ~ 902 [46 ~ 92]	130			20	/5	221.7	101.0	13.3	45	2/3	107	231	20	K300-20	51	50.0	203

%1. All model numbers are MTO.


2. Apply the lubricant such as molybdenum disulfide to the chain and top of the sprocket teeth periodically (every 2000 hours). 3. If you intend to use the Torque Guard at a higher rpm than that listed above, contact TEM for a consultation

Sprocket combination

When using a sprocket with a drive member, select the appropriate sprocket from the chart below.

- This chart lists:
 - (1) Available sprocket machining dimensions
 - (2) The minimum number of sprocket teeth and chain size, so the roller chain and Torque Guard do not interfere with each other.

Model No. 3-Y drilled hole

Coupling side bore diameter (No symbol if bore not finished)

Tightening method Keyway: J: new JIS standard, E: old JIS second grade, Special: no symbol

Unit : mm

Torque Guard	Finished	sprocket dir	mensions		Min. No. of sprocket teeth									
Model No.	d _{H7}	D	Y	RS 25	RS 35	RS 40	RS 50	RS 60	RS 80	RS100	RS120			
TGM3	30	40	4.5	*30	*30	24	20							
TGM6	30	40	4.5	*30	*30	24	20							
TGM20	40	50	5.5	*34	*37	*28	24	20						
TGM60	60	73	6.6		*32	26	30	26	20					
TGM200	82	114	11.0			*37	30	26	20	17				
TGM400	114	165	14.0				*41	35	*27	24	20			
TGM800	114	165	14.0				*41	35	*27	24	20			

P.C.D. D

*Not the standard number of sprocket teeth.

Note: Verify the chain transmissible capacity when determining the number of sprocket teeth. Note: Insert the joint link from the outside of the sprocket.

Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine. For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death.

1. Setting trip torque

$$\begin{split} T_{P} &= T_{L} \times S.F = \frac{60000 \times P}{2\pi \cdot n} \times S.F \ \Big| T_{P} = \frac{974 \times P}{n} \times S.F \Big| \\ T_{P} &= Trip \ torque \ N \cdot m | kgf \cdot m | \\ P &= Transmittance \ power \ kW \qquad S.F = Service \ factor \\ n &= rpm \ r/min \end{split}$$

- (1) From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table 1

Service factor	Operating conditions
1.25	In the case of normal start up/stop, intermittent operation
1.50	In the case of a heavy shock load or forward-reverse driving

2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_{L} + I_{r}}{I_{s}} \qquad \left\{ K = \frac{GD_{L}^{2} + GD_{r}^{2}}{GD_{s}^{2}} \right\} \qquad Tt = \frac{K \cdot T_{s} + T_{L}}{1 + K} \qquad Tp = SF \cdot Tt$$

K : Inertia ratio

- ${\sf I}_S \quad \ \ : {\rm Drive \ side \ inertia \ moment} \ \ ({\sf kg}\!\cdot\!m^2)$
- $\{GD_{s}^{2}: \text{Drive side } GD^{2} (kgf \cdot m^{2})\}$
- I_L : Load side inertia moment $(\mathrm{kg}\!\cdot\!\mathrm{m}^2)$
- $\{GD_L^2 : \text{load side } GD^2 \ (\text{kgf} \cdot m^2)\}$
- $\textbf{I}_t ~~:~ \text{Torque Guard inertia moment}~~(\textbf{kg} {\boldsymbol{\cdot}} \textbf{m}^2)$
- $\{GD_t^2: \text{Torque Gard } GD^2 (kgf \cdot m^2)\}$
- $T_s ~~: {\rm Motor \ starting \ torque \ } (N \! \cdot \! m) \{ kgf \! \cdot \! m^2 \! \}$
- $\textbf{T}_t ~~: \text{Torque in Torque Guard during start up}~~(N \cdot m) \{ \texttt{kgf} \cdot m \}$
- $T_L \quad : \text{Load torque } (N \cdot m) \{ kgf \cdot m \}$
- T_P : Trip torque $(N \cdot m) \{ kgf \cdot m \}$
- S.F. : Service factor
- Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD² and torque value.

3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large). In this case install it as close to the load side as possible.

4. Choosing the model number

Choose a model where the calculated trip torque is within the minimum to maximum setting range.

5. Verifying bore diameter

Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

6. Confirming rpm

Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.

Guard

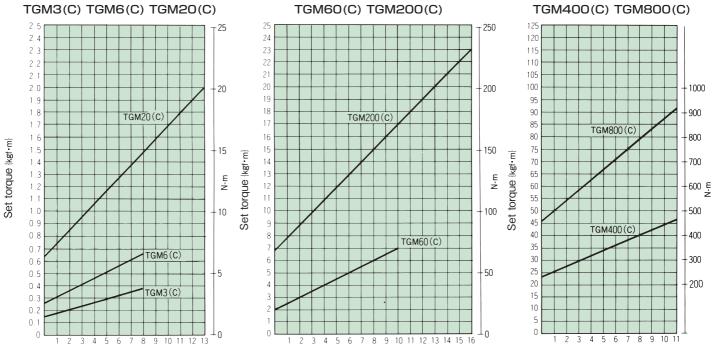
Torque

TGM Series

Torque setting

By simply turning the adjusting screw with a hexagonal Allen wrench, precise torque can be set.

 The minimum torque value is set for shipment. The top surface of the adjustable screw is adjusted to the minimum torque (torque indicator 1) printed on the nameplate. This is the base tightening quantity.



- 2. Before setting the torque, apply Loctite 242 or an equivalent adhesive to the exposed surface of the adjustable screw's thread portion. After setting torque, it becomes anti-loosing.
- 3. From the "Tightening Amount Torque Correlation Chart"(below), find the adjusting screw tightening angle equivalent to the predetermined trip torque. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque. Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use these values only as a rough guide.

- 4. Do not set torque lower than the minimum torque (torque indicator 1 on the nameplate). If it is necessary to use a torque level lower than the minimum, use a weak spring type.
- 5. Do not turn the adjusting screw when the Torque Guard is in a tripped state.
- 6. Torque setting before shipment is available. (Please refer to page 43).

Model No.	Amount of torque variation per one (1) rotation N·m {kgf·m}	Total number of rotations
TGM3	0.28 (0.029)	8
TGM6	0.48 (0.049)	8
TGM20	1.02 {0.10}	13
TGM60	4.90 (0.5)	10
TGM200	9.80 {1.0}	16
TGM400	20.6 (2.1)	11
TGM800	41.2 {4.2}	11

Set torque = min. torque + (amount of torque variation per one (1) rotation X total number of rotations of the adjustable screw)

Tightening Amount-Torque Correlation Chart

No. of rotations of the adjustable screw.

No. of rotations of the adjustable screw.

No. of rotations of the adjustable screw.

Overload detection

Using the limit switch, overload can be detected easily. If the Torque Guard trips due to overload, the cam follower will disengage from the pocket and the camshaft and main unit (case) will idle. At the same time, the LS detecting plate slides in the axial direction.

The limit switch detects this movement, shuts the power off and sets off an alarm. Whether the stopping side is on the camshaft side or the main unit case side, overload can be detected. For every one trip, the LS detecting plate slides three times.

(1) Chart 4 shows LS detecting plate movement and force during trip.

Choose a limit switch from chart 4 that meets the "movement until operation" and its "necessary amount of force".

(2) Diagrams 2 and 3 are limit switch installation examples.

Limit Switch Installation Example

Diagram 1 Amount of LS detecting detecting plate movement Limit switch

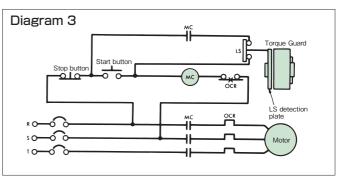
Installation

1. Installing to the axis

- A shaft diameter tolerance of h7 for installing the Torque Guard to the shaft is recommended. Use a JIS 1301-1996 (New JIS standards) parallel key. Allow some clearance between the top of the key and keyway
- When installing the cam actuating plate to the shaft, tighten bolts in three places. (For the key, 1 place; for the shaft, 2 places)
- When mounting the Torque Guard to the end face of the shaft, depending on the installation method, the cam actuating plate set screws cannot be used. In this case use the tap holes on the mounting seat side. Set screws for these tap holes are not included, so use bolts with a length that fits the bore diameter.

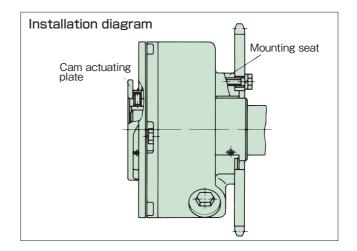
Take care to ensure that the head of the set screws do not come out from the outer diameter of the camshaft.

If the head of the screws come out, they will interfere with the inner diameter and lateral side of the mounting seats when the Torque Guard trips.


• If during operation there is a chance vibration will cause the screws to loosen, apply Loctite 242 or an equivalent for anti-loosening.

- (3) Connect the limit switch's "b contact" parallel to the start button's contact.
- (4) Diagram 4 shows an example of a typical circuit. TEM recommends using a built-in holding circuit.

Chart 4


Model No.	Amount of movement mm	Force when moving N {gf}
TGM3	4	3.9 {400}
TGM6	4	3.9 {400}
TGM20	4	3.9 {400}
TGM60	6	3.9 {400}
TGM200	6	5.4 {550}
TGM400	8	5.9 {600}
TGM800	8	5.9 {600}

Circuit Example

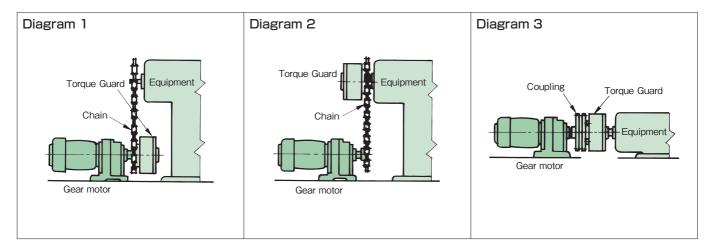
2. Installation of drive member

- By utilizing 3 mounting seats, tighten the bolts with the torque shown in chart 2 to install the sprockets, pulleys, gears and couplings to the housing.
- Refer to page 44 for sprocket installation. If it is necessary to combine a Tsubaki Power Lock (keyless locking device) with a non-backlash coupling, contact TEM for a consultation.

Torque Guard

FGM Serie

3. Installation bolts


The screw-in length of the mounting seat installation bolts and their tightening torque recommended values are listed on table. As well, use JIS B1001 2 class and higher class prepared holes for installation bolts.

Model No.	Bolt screw-in length (mm)	Bolt tightening torque N·m {kgf·m}	Prepared hole diameter for installation bolt (mm)
TGM3	6~7	$2.0 \sim 2.9 \{0.2 \sim 0.3\}$	4.5
TGM6	6~ 7	$2.0 \sim 2.9 \left\{ 0.2 \sim 0.3 \right\}$	4.5
TGM20	8~ 9	$3.9 \sim 5.9 \left\{ 0.4 \sim 0.6 ight\}$	5.5
TGM60	9~11	6.9 ~ 11 {0.7 ~ 1.1}	6.6
TGM200	15 ~ 17	$34 \sim 51 \ \{3.5 \sim 5.2\}$	11.0
TGM400	18 ~ 25	59~89 {6.0~9.1}	14.0
TGM800	18 ~ 25	59~89 {6.0~9.1}	14.0

Table

4. Connecting

The input/output connection is placed between the variator, reducer or indexing drive device and the device/machine. Diagrams 1, 2 and 3 show typical connecting examples.

Resetting

As it is an automatic reset system, just re-starting the drive side can automatically reset it.

- 1. When the Torque Guard trips due to overload, stop the rotation and remove the cause of the overload.
- When resetting, reset (re-engage) with input rpm at less than 50r/min or by inching the motor. To avoid injury, do not reset the Torque Guard by hand.
- 3. A distinct clicking sound is made when the cam follower settles in its pocket.

Grease

Torque Guard TGM Series are packed in high quality grease before shipment, so they can be used as is. Under normal conditions greasing is not necessary.

Grease used:

Torque Gard TGZ Series

Features

TGZ Series can be used as a simple layout release type protection device or an ON-OFF, Ministry of Economy, Trade and clutch.

Release type

After tripping due to overload, the input side freely rotates. Even a high-speed shaft can be operated worry-free.

Resetting by external force

After the Torque Guard has been stopped, remove the cause of overload. Then give load to the axial direction manually or with external force.

ON-OFF function

The rotation (ON) or shut-off (OFF) functions are available arbitrarily. They can be used as an accurate mechanical type ON-OFF clutch.

Single-position type

This uniquely assembled torgue transmission element ball and pocket configuration only engages in one position.

Accuracy of consecutive repeated trip torque fluctuations is within $\pm 10\%$.

Even with repeated trips, the fluctuating trip torque variation is always within $\pm 10\%$.

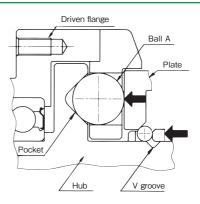
Easy torque adjustment

Just by turning the adjusting nut, trip torque can be easily set.

Easy to see torque indicator

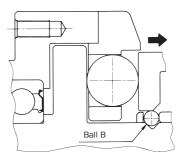
By using the revolution indicator and angle indicator, set torque can be monitored at any time.

Standard type overload detecting sensor


It can detect overload by the non-contact type TG Sensor (refer to pages 28, 29) and stop the motor or output an alarm.

Standard stock

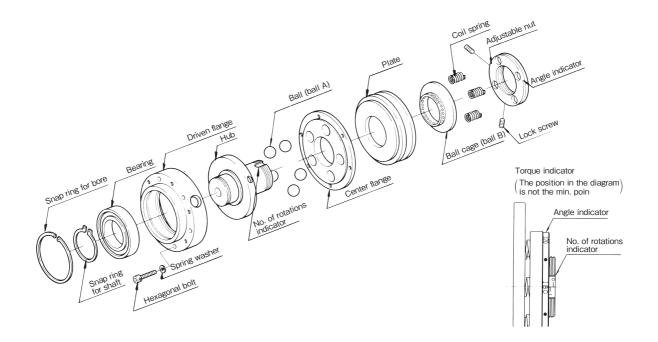
The rough bore TGZ Series is an in-stock item for prompt delivery. The coupling type is MTO, but the delivery period is

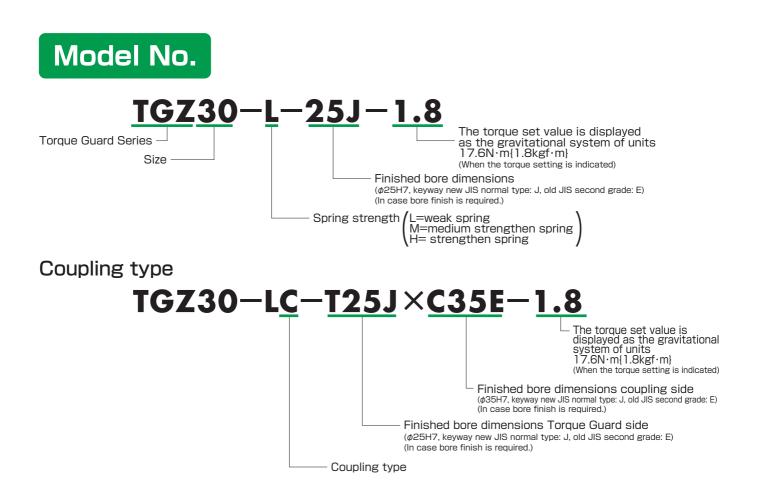

Operating Principles

During normal operation (when meshing)

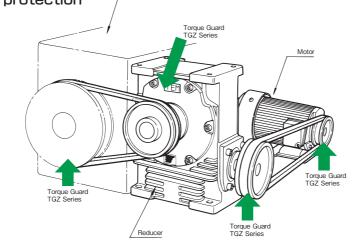
Torque transmission is made by ball A which is pressurized and retained at the hub pocket and the driven flange. The non-symmetric arrangement of the balls and pockets allows only one engagement position per one rotation, and there is no phase shift after tripping.

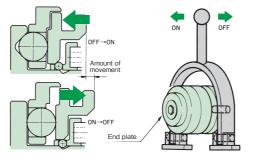
During overload (when tripping)


When overloading (when OFF), ball A instantly pops out of its pocket, and the plate and ball B simultaneously move to the adjusting nut side.


Ball A comes completely out of its pocket and ball B enters the hub outer circumference V-groove, and the pressure from the springs is not transferred to the plate. Therefore, ball A freely rotates without

Torque Guard



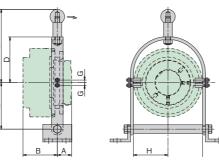

Applications classified by use

1. Overload protection

The other machine

2. ON-OFF clutch

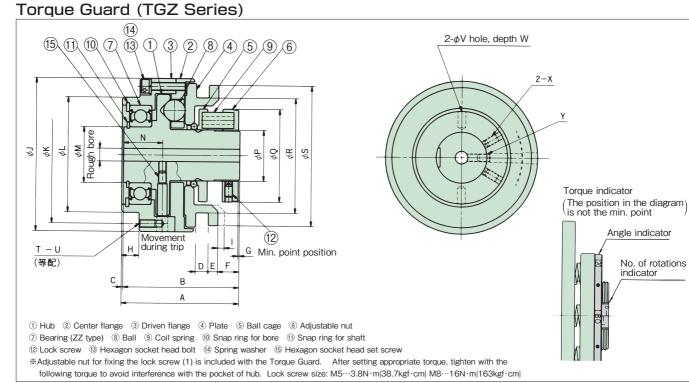
As demonstrated in the diagram on the left, the TGZ Series can be installed with any motor shaft, reducer (variator) or other machines. When considering the layout, make sure to leave sufficient space to adjust torque and for resetting procedures. After removing the cause of overload, do not reset the machine while it is running. \triangle If the Torque Guard is reset during rotation, the machine will suddenly run.


By using manual or mechanical external force (pneumatic, hydraulic, etc.), the plate can be moved, cutting off the input rotation (OFF) or transmitting it (ON). The necessary axial load for turning the machine ON or OFF is written in the table below.

Necessary shaft direction load when ON-OFF

Actuation Model No.	OFF → ON N {kgf}	ON → OFF N kgf	Amount of movement mm
TGZ20-L	49 { 5}	245 25	
TGZ20-M	88 { 9}	431 { 44}	4.1
TGZ20-H	176 {18}	862 { 88}	
TGZ30-L	98 {10}	470 { 48}	
TGZ30-M	235 {24}	1176 {120}	4.7
TGZ30-H	470 {48}	2352 {240}	

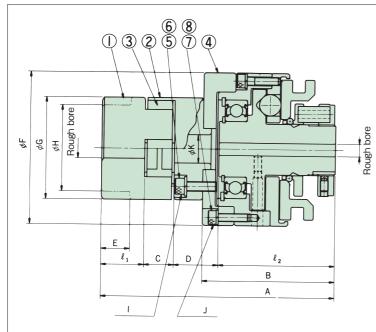
·F						
Actuation Model No.	OFF → ON N kgf	ON → OFF N {kgf}	Amount of movement mm			
TGZ40-L	157 { 16}	774 { 79}				
TGZ40-M	421 { 43}	2087 {213}	5.9	Axial load		
TGZ40-H	833 { 85}	4155 [424]		fluctuates depending on		
TGZ50-L	451 { 46}	2269 {231}		the number of actuations and		
TGZ50-M	902 { 92}	4518 461	7	usage conditions. Set		
TGZ50-H	1382 {141}	6919 (706)		the load with margin.		

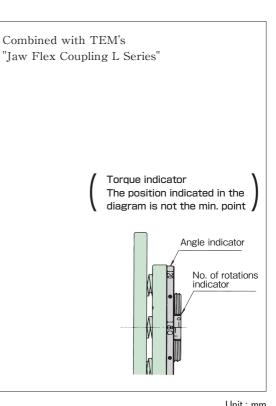

3. ON - OFF handle reference diagram

During rotation the pin touches the TGZ plate, so apply lubrication to the pin's surface.

Model no.	А	В	C min.	D min.	E min.	F min.	G	Н	Stroke max. deg.	Shaft direction axial force N {kgf}	Pin diameter	Max. pin length
TGZ20	23.5	50.5	60	70	170	230	4.5	49	3.9°	225 {23}	φ7	13
TGZ30	24.5	59.0	70	90	210	280	4.5	60	3.9°	588 {60}	φ7	15
TGZ40	32.5	68.5	90	100	250	340	5.0	77	3.8°	1098 {112}	φ8	16
TGZ50	34.2	80.3	110	120	300	410	6.0	90	3.3°	1852 {189}	φ9.5	20

Transmissible capacity/dimensions


Unit : mm Coil spring G l amount of Torque Guard Max. rpm Rough Max. Κ Set torque range min bore color X В С D Е Н bore А F movement during trip J point position Model No. N·m {kgf·m} PCD r/min diameter diamete the number TGZ20-L $2.4 \sim 8.3 | 0.24 \sim 0.85 |$ Yellow X 3 TGZ20-M 4.1~16 0.42~1.6 1800 Blue Х3 8 20 74 73 1 8 6 13.5 0.8 11 4.1 96 86 TGZ20-H 8.2 ~ 31 |0.84 ~ 3.2 Blue X 6 TGZ30-L $5.9 \sim 21 \ |0.6 \sim 2.1|$ Yellow X 4 $20 \sim 52 |2.0 \sim 5.3|$ TGZ30-M 1800 Red X 4 12 30 83.5 82 1.5 8 6 14.5 1.1 11.5 4.7 118 106 TGZ30-H 39~108 4.0~11 Red X 8 25~93 2.6~9.5 TGZ40-L Blue X 5 TGZ40-M $44 \sim 127 | 4.5 \sim 13 |$ Χ5 101 5.9 1800 Red 17 40 100 1 9 8 20 1.1 14 152 139 TGZ40-H $88 \sim 245 | 9.0 \sim 25 |$ Red X10 TGZ50-L 63~157 (6.4~16) Red Χ5 $127 \sim 304 | 13 \sim 31 |$ TGZ50-M 1800 Red X10 22 50 114.5 112 2.5 10 9 20.2 1.2 16 7 178 162 TGZ50-H $245 \sim 451 | 25 \sim 46 |$ Green X10


Torque Guard Model No.	L h7	м	И	Р	Q	R	s	т	U screw diameter X length	V	w	X screw size X length	Y screw size X length	ж Mass kg		GD^{2} × 10 ⁻² kgf·m ²
TGZ20-L																
TGZ20-M	72	35	24.5	32	57	70	88	4	M5×10	5	10	M5×10	M5×10	2.57	0.273	1.09
TGZ20-H																
TGZ30-L																
TGZ30-M	87	45	27.5	45	75	88	108	4	M6×12	6	10	M5×10	M6×10	4.17	0.695	2.78
TGZ30-H																
TGZ40-L																
TGZ40-M	114	65	32.5	65	103	119	141	6	M6×12	8	14	M8×10	M8×10	8.71	2.40	9.60
TGZ40-H																
TGZ50-L																
TGZ50-M	133	75	37	75	113	138	166	6	M8×16	9	14	M8×10	M8×10	13.7	5.30	21.2
TGZ50-H																

*Mass, inertia moment and GD² are based on the bores' maximum diameters.

Note: All rough bore products are stock items.

Torque Guard Coupling

① Coupling hub A ② Coupling hub B ③ Insert ④ Adapter
 ⑤ Hexagon socket head bolt ⑥ Spring washer ⑦ Hexagon socket head bolt ⑧ Spring washer

	-													Jnit : mm
Torque Guard	Set torque range	Max. rpm	Torque	Guard	Coupling			P	6	6			-	F
Model No.	N·m {kgf·m}	r/min	Rough bore diameter	Max. bore diameter	Rough bore diameter	Max. bore diameter	A	В	С	D	l 1	l 2	E	1
TGZ20-LC	2.4~8.3 (0.24~0.85)													
TGZ20-MC	4.1~16 (0.42~1.6)	1800	8	20	12.7	35	146	83	18.8	27.2	27	73	_	96
TGZ20-HC	8.2 ~ 31 0.84 ~ 3.2													
TGZ30-LC	5.9~21 0.6~2.1]													
TGZ30-MC	$20 \sim 52 2.0 \sim 5.3 $	1800	12	30	18.0	47	180	93.5	22.6	32.5	42.9	82	_	118
TGZ30-HC	39~108 {4.0~11}													
TGZ40-LC	25~93 2.6~9.5													
TGZ40-MC	$44 \sim 127 \{4.5 \sim 13\}$	1800	17	40	19.1	58	213	111	26.1	32.9	54	100	34.9	152
TGZ40-HC	88 ~ 245 (9.0 ~ 25)													
TGZ50-LC	63~157 (6.4~16)													
TGZ50-MC	$127 \sim 304 \{13 \sim 31\}$	1800	22	50	19.1	63	242	127.5	26.1	40.4	63.5	112	34.9	178
TGZ50-HC	245 ~ 451 25 ~ 46													

Torque Guard Model No.	G	н	l No. of pieces- screw size X length	J No. of pieces- screw size X length	* Mass kg		-	Model No. of coupling used	к	Allowable angular misalignment (deg.)	Allowable parallel misalignment	Allowable shaft direction displacement
TGZ20-LC												
TGZ20-MC	64.3	_	3-M6×20	4-M5×22	4.34	0.44	1.76	L099-H	27	0.5	0.38	±0.5
TGZ20-HC												
TGZ30-LC												
TGZ30-MC	84.1	_	6-M6×22	4-M6×22	7.77	1.22	4.86	L110-H	40	0.5	0.38	±0.7
TGZ30-HC												
TGZ40-LC												
TGZ40-MC	114.3	101.6	6-M6×25	6-M6×25	15.4	4.05	16.2	L190-H	54	0.5	0.38	±1.0
TGZ40-HC												
TGZ50-LC												
TGZ50-MC	127	107.9	6-M8×25	6-M8×25	23.2	8.63	34.5	L225-H	60	0.5	0.38	±1.0
TGZ50-HC												

 $\ensuremath{\mathscr{K}}\xspace{\mathsf{Mass}}$, inertia moment and GD^2 are based on the bores' maximum diameters.

Note: All products are MTO.

Selection

As a safety device, the Torque Guard will be most effective if it is installed in the place nearest to where overload is thought to most likely occur on the driven machine.

For most situations, avoid using the Torque Guard with human transportation or lifting devices. If you decide to use a Torque Guard with these devices, take the necessary precautions to avoid serious injury or death from falling objects.

$$\begin{split} T_{\rm P} &= T_{\rm L} \times {\rm S.F} = \frac{60000 \times {\rm P}}{2\pi \cdot {\rm n}} \times {\rm S.F} \left| T_{\rm P} = \frac{974 \times {\rm P}}{{\rm n}} \times {\rm S.F} \right| \\ T_{\rm P} &= {\rm Trip \ torque} \quad {\rm N} \cdot {\rm m} |{\rm kgf} \cdot {\rm m}| \quad T_{\rm L} = {\rm Load \ torque} \ {\rm N} \cdot {\rm m} |{\rm kgf} \cdot {\rm m}| \\ {\rm P} &= {\rm Transmittance \ power} \quad {\rm kW} \quad {\rm S.F} = {\rm Service \ factor} \\ {\rm n} &= {\rm rpm} \quad {\rm r/min} \end{split}$$

- From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher.
- (2) When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Guard is installed and rated output power. Then, depending on the conditions of use, multiply by the service factor in Table 1.

Table	
Service factor	Operating conditions
1.25	In the case of normal start up/stop, intermittent operation
1.50	In the case of a heavy shock load or forward-reverse driving

2. When rpm is relatively high

When rpm is relatively high (more than 500r/m), or when load inertia is large, depending on the motor's start up torque, there is a chance the Torque Guard will trip. In this case, determine the inertia ratio and calculate the torque used in the Torque Guard during start up, then multiply it by the service factor and make this the trip torque.

$$K = \frac{I_{L} + I_{t}}{I_{S}} \qquad \left\{ K = \frac{GD_{L}^{2} + GD_{t}^{2}}{GD_{s}^{2}} \right\} \qquad Tt = \frac{K \cdot T_{S} + T_{L}}{1 + K} \qquad Tp = SF \cdot Tt$$

K : Inertia ratio

 I_s : Drive side inertia moment $(kg \cdot m^2)$

Handling

1. Bore finishing (Torque Guard)

(1) Before finishing

The Torque Guard TGZ Series is shipped set at the minimum point (minimum torque value). Once received, confirm that the revolution indicator and angle indicator are set at zero.

(2) Disassembly

Loosen the setscrews, remove the adjusting nut and take out the coil springs, ball cage, plate and balls. Next, take out the shaft snap ring, and remove the bearing and driven flange. When disassembling, take care not to lose the ball B at s ball cage. Make sure the Torque Guard parts do not become dusty or dirty.

(3) Chucking

Chuck the hub flange's outside diameter and center the hub portion.

(4) Keyway

① Keyway specifications

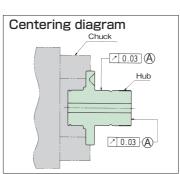

Table 1 shows the maximum bore diameters for keyway specifications.

Table 1

Model No.	Max. shaft diameter	Applicable standard
TGZ20	$\phi 20$	parallel key
TGZ30	$\phi 30$	
TGZ40	$\phi 40$	New JIS
TGZ50	$\phi 50$	Old JIS

② Centering

Chuck the hub flange's outer edge and center the hub as shown in the figure on the right.

- $\{GD_s^2 : Drive side GD^2 (kgf \cdot m^2)\}$
- I_L : Load side inertia moment $(kg \cdot m^2)$
- $\{GD_{L}^{2}: \text{load side GD}^{2}(\text{kgf} \cdot \text{m}^{2})\}$
- I_t : Torque Guard inertia moment $(kg \cdot m^2)$
- $\{GD_t^2 : Torque Guard GD^2 (kgf \cdot m^2)\}$
- T_s : Motor starting torque $(N \cdot m) \{ kgf \cdot m^2 \}$
- $T_{t} \quad : \text{Torque in Torque Guard during start up} \ (N \cdot m) \left\{ kgf \cdot m \right\}$
- T_L : Load torque $(N \cdot m) \{ kgf \cdot m \}$
- T_{P} : Trip torque $(N \cdot m) \{ kgf \cdot m \}$
- S.F. : Service factor

Note) Use the equivalent value to the shaft in which the Torque Guard is installed for each inertia moment, GD^e and torque value.

3. Precautions when deciding trip torque

Compared with load torque, if the torque used when starting up becomes large, the setting trip torque value also becomes large, causing a problem from the viewpoint of the overload protection device. (Compared with the load torque, the trip torque is too large.) In this case install it as close to the load side as possible.

4. Choosing the model number

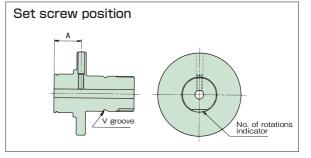
Choose a model where the calculated trip torque is within the minimum to maximum setting range.

5. Verifying bore diameter

Verify that the shaft where the Torque Guard will be installed is in the possible range (refer to the dimensions table) of the bore diameter of the Torque Guard model you selected.

If the shaft diameter is larger than the possible bore range, select a model one size larger that uses a weak spring.

6. Confirming rpm


Confirm that the Torque Guard rpm used is within the maximum rpm value in this catalog.

③ Machining

_

The keyway should be machined directly below the setscrew tap at the hub flange section as shown below. Table 2_____

Model No.	А
TGZ20	24.5
TGZ30	27.5
TGZ40	32.5
TGZ50	37.0

(5) Reassembly

After bore finishing is completed and you are reassembling the Torque Guard, make sure to coat the pockets of the ball As and ball Bs, and the V-groove with grease.

-GZ Seri

2. Bore finishing (Torque Guard Coupling)

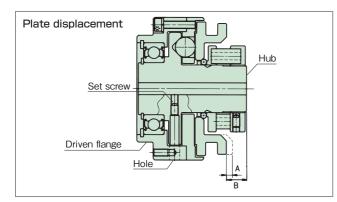
(1) Reassembly

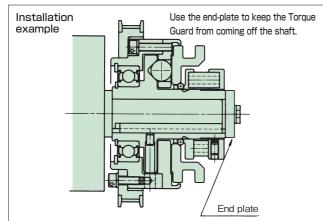
① Keyway specifications

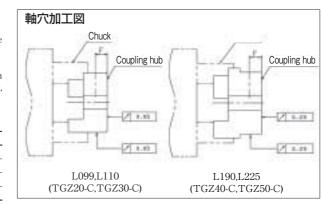
Table 3 shows the maximum bore diameters on the coupling side. For the maximum bore diameters of the Torque Guard hub, refer to Table 1. ② Centering

Chuck the coupling hub's outer edge and center the hub as shown in Figure 5. For the recommended positions of the coupling hub setscrew, refer to Table 4 (Length F).

Table 3			Table 4								
Model No.	Max. shaft diameter	Applicable standard		Model No.	Coupling model No.	Length F					
TGZ20	φ 35	Parallel key		TGZ20-C	L099-H	13.5					
TGZ30	φ 47			TGZ30-C	L110-H	20.5					
TGZ40	φ 58	New JIS	-	TGZ40-C	L190-H	25.5					
TGZ50	φ 63	Old JIS	-	TGZ50-C	L225-H	25.5					


3. Trip Torque setting

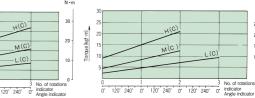

- (1) Torque Guard TGZs are all shipped with torque set at the minimum point (min. torque value). Confirm that the angle indicator and the revolution indicator are set at zero. The revolution indicator can be read at the end face of the adjusting nut. Refer to page 52 for more information.
- (2) From the "Tightening Amount Torque Correlation Chart" (below), find the adjusting nut tightening angle equivalent to the predetermined trip torque. Set at 60° toward the determined tightening value, then install to the machine and conduct a trip test. Gradually tighten and set at optimum trip torque.
- (3) After setting torque, screw the lock screw to the adjusting nut. Refer to page 27 for lock screw tightening torque and points of caution.
- (4) Do not turn the adjusting nut (bolt) more than the torque indicator's maximum value. Doing so will put it in a locked position, and there will be no leeway for the disk spring to bend.


**Each product's trip torque does not always correspond with the value listed in the "Tightening Amount - Torque Correlation Chart", so use these values only as a rough guide.

4. Resetting

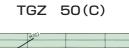
Match up one hole of the driven flange with the hub side's setscrew position. (This position is the pocket and ball's correct phase.) Next, apply axial load to the plate to reset (refer to the right chart.). To determine whether the Torque Guard has completely reset, verify it using the measurements of the diagram below (displacement A).

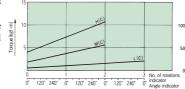
TGZ 20(C)


250

200

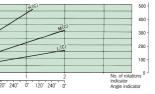
150


100


50

NI - m

Forque lkgf -



120 240

TGZ 30(C)

120 240

Model No.	Axial load N \kgf	Amount of displacement A mm	B mm	
TGZ20-L	49 [5]			
TGZ20-M	88 {9}	4.1	13.5	
TGZ20-H	176 [18]			
TGZ30-L	98 {10}			
TGZ30-M	235 [24]	4.7	14.5	
TGZ30-H	470 [48]			
TGZ40-L	157 [16]			
TGZ40-M	421 [43]	5.9	20.0	
TGZ40-H	833 (85)			
TGZ50-L	451 {46}			
TGZ50-M	902 {92}	7.0	18.2	
TGZ50-H	1382 {141}			

Maintenance

Grease the ball and ball cage either once per year or every thousand trips.

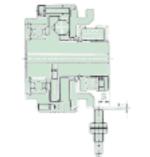
Grease

Exxon Mobil	Showa Shell	Japan-Energy	Ildemitsu	Nippon Oil Corporation	Kygnus
Mobilux EP2	Alvania EP Grease 2	Rizonics EP 2	Daphny Eponex Grease EP 2	Epinoc Grease AP(N)2	Cosmo Dynamax EP Grease 2

Guard


orque

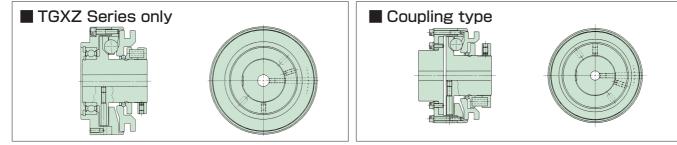
FGZ Series


Overload detection

TG sensor installation

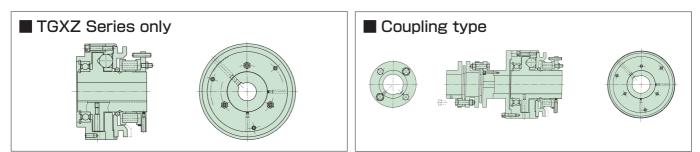
- The detecting distance of a TG Sensor is 1.5mm. Set the Torque Guard in a non-trip condition with the dimensions (s, t) in the chart below.
- Install the TG Sensor with the Torque Guard at the tripped position. Then, while rotating the Torque Guard by hand, verify that the TG Sensor is functioning (LED at the side is lighting) and there is no interference with the plate. Finally, reset the Torque Guard.

Installation	diagram	TGZ	Series	



			Unit: mm
measurement Model no.	S	t	Amount of plate movement
TGZ20	9.5	1.2	4.1
TGZ30	10.2	1.2	4.7
TGZ40	15	1.2	5.9
TGZ50	12.2	1.2	7.0

Special Specifications


TGXZ Series

Non-backlash and complete release type. With its high-speed specifications (up to 3000r/min), it is ideal for when instant stop isn't possible. Please contact TEM for more information.

TGZ Large Series

For the application of setting torque 451N \cdot m {46kgf \cdot m} and above, please contact TEM for more information.

Applicable sprocket for TGZ Series

Sprocket Model No. TGZ size	RS25	RS35	RS41	RS40	RS50	RS60	RS80	RS100	RS120	
TGZ20L, M, H	(51)	(35)	(28)	30 (29)	24 (23)	20	16	13	13 (12)	
TGZ30L, M, H	(62)	(43)	(33)	35 (33)	30 (27)	24 (23)	18	16	14	
TGZ40L, M, H		(54)	(41)	45 (41)	35 (34)	30 (24)	24 (23)	19	16	
TGZ50L, M, H		62	(48)	48	40 (39)	35 (33)	26	21	14	

* The number of teeth in parentheses is not the amount for a standard Type A sprocket. Whenever possible, use a sprocket with more teeth than this.

Features

Traditional friction type Economically priced and easy to use

Easy torque adjustment

Slip torque setting and adjusting can be done by simply tightening the adjusting nut or bolts. The friction of the friction facings and the center member transmits torque, so overload is guaranteed to cause the Torque Limiter to slip, thus protecting the machine.

Automatic reset

If overload occurs the Torque Limiter will slip. If overload is removed it will automatically reset and begin to rotate. Because there are no parts to replace like a shear pin, the Torque Limiter requires little labor

Can be fixed to each type of drive

Sprockets, gears, pulleys, etc. can be fixed to the center member.

A wide variety of Torque Limiters are available

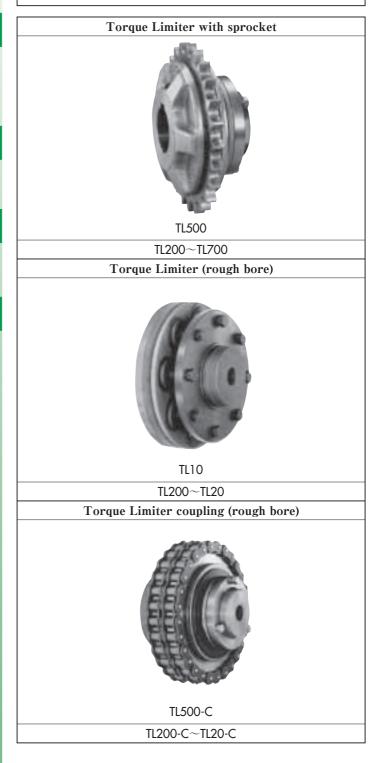
From small capacity to large, all standard models can be used in all transmission conditions.

Finished bores for quick delivery

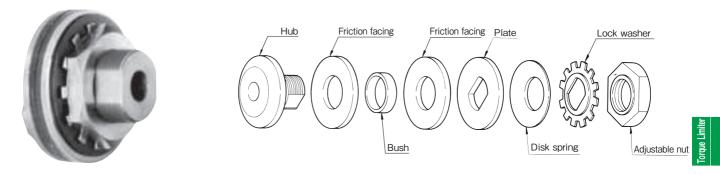
Finished bore products can be made for quick delivery. (Refer to pages 61, 63)

Series

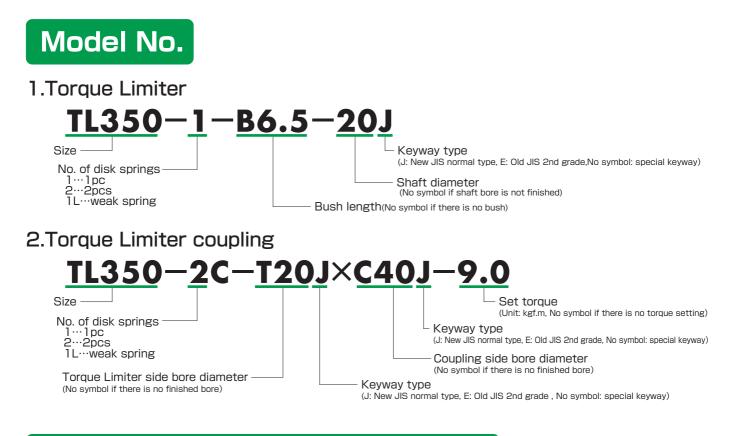
Torque Limiter


Once attached to the shaft, torque transmission is conveyed through roller chains, belts and gears.

Torque Limiter with sprocket

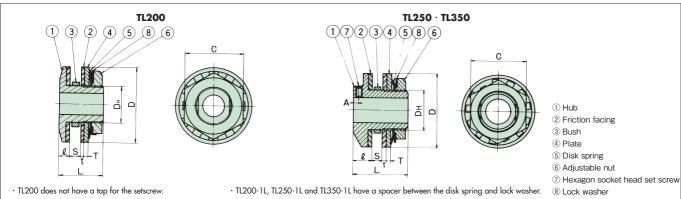

The torque of finished bore Torque Limiters with machined sprockets is factory pre-set.

Torque Limiter coupling


A combined Torque Limiter and roller chain coupling.

Construction and operating principles

- During normal operation, the disk spring inserted between the center member and friction facings applies pressure to the center member. Below the set torque, the frictional force transmits rotation.
- If the operational torque exceeds the set torque due to overload, the center member will slip between the friction facings. When overload is stopped, it automatically resets.



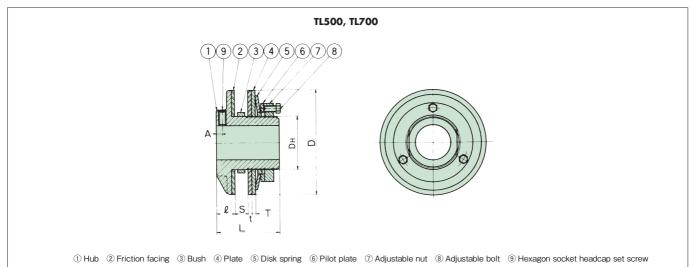
When using the Torque Limiter

Before installing a Torque Limiter rough bore product to the shaft, it is necessary to finish the bore, keyway and center member as well as torque setting.

- · Refer to page 64 for more information on Torque Limiter selection and center member selection/machining.
- Before assembling the Torque Limiter, remove any oil, rust or dust from the hub, friction facings, plate or center member (gear, pulley, etc.).
- Refer to page 64 for more information on setting torque.

Transmissible capacity/dimensions

																		Uni	it : mm			
	Set torque range	Max.rpm	Rough bore	Max bore	Bush	Bush outer	Center member						D	imensio	ons				Mass			
Model No.		(r/min)			length	diameter	bore diameter	D	D _H	L	l	Т	t	S max.	А	С	Adjustable nut diameter X pitch	Set screw	kg			
TL200-IL	$1.0 \sim 2.0 \ 0.1 \sim 0.2 $				3.8																	
TL200-1	2.9~9.8 0.3~1.0		7	14	6.0		30-0.024	30 ^{+ 0.03}	50	24	29	6.5	2.6	2.5	7	—	38	M24×1.0	_	0.2		
TL200-2	6.9~20 0.7~2.0				0.0																	
TL250-IL	2.9~6.9 0.3~0.7	1			4.5																	
TL250-1	6.9 ~ 27 0.7 ~ 2.8	1,800	10	22				41 ^{- 0.010} - 0.045	41 ^{+ 0.05}	41 ^{+ 0.05} 65	35	48	48 16	4.5 3	3.2 9	9	4	50	M35×1.5	M5	0.6	
TL250-2	14~54 11.4~5.5				6.5																	
TL350-IL	9.8 ~ 20 {1.0 ~ 2.0}				4.5 25 6.5 9.5																	
TL350-1	20~74 2.0~7.6		17	25		49-0.025	49 ^{+ 0.05}	49 ^{+ 0.05}	49 ^{+ 0.05}	49 ^{+ 0.05}	89	42	62	19	4.5	3.2	16	6	63	M42×1.5	M6	1.2
TL350-2	34~149 3.5~15.2																					

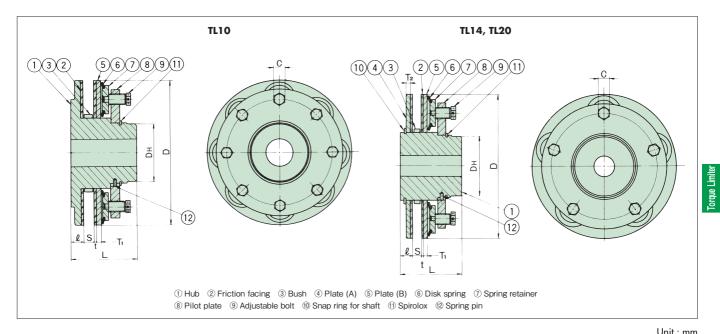

Note: 1. The products in bold are stock items. The rest are MTO.

2. The hexagon socket head set screw is included.

3. On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.

4. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.

5. For the selection of bush length, refer to the Selection page.


	Unit : mm																		Uni	it : mm														
		Set torque range	Max.rpm	Rough hore	Max hore	Bush	Bush	Center member							Dir	nens	ions			Mass														
M	lodel No.		(r/min)		diameter		outer diameter	hara diamatar	D	D _H	L	l	Т	t	S Max	А	Adjustable nut diameter X pitch	Adjustable bolt diameter X pitch	Set screw	La														
TL	L500-1L	$20 \sim 49 \mid 2.0 \sim 5.0 \mid$				6.5																												
T	L500-1	47~210 4.8~21.4		20	42	9.5	$74^{-\ 0.05}_{-\ 0.10}$	74 ^{+ 0.05}	127	65	76	22	6	3.2	16	7	M65×1.5	M8 × 1	M 8	3.5														
T	L500-2	88 ~ 420 9.0 ~ 42.9	1,800			9.5																												
TL	L700-1L	49~118 5.0~12	1,800			0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9.5	0.5	0.5														
T	L700-1	116 ~ 569 [11.8 ~ 58.1]		30	64		105-0.075	105+ 0.05	178	95	98	24	8	3.2	2 29	8	M95×1.5	M10×1.25	M10	8.4														
T	L700-2	223~1080 22.8~111				12.5																												

Note: 1. The products in bold are stock items. The rest are MTO.

2. The hexagon socket head set screw is included.

3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.

4. For the selection of bush length, refer to the Selection page.

i i	Dimensions															nıt : mm			
		Set torque range	Max.rpm	Rough bore	Max. bore	Bush	Bush outer	Center member						Dime	nsions	5			Mass
	Model No.	N∙m {kgf∙m}	(r/min)					diameter bore diameter	D	D _H	L	l	T 1	T_2	t	S max.	С	Adjustable nut diameter X pitch	kg
	TL10 - 16	392 ~ 1247 40 ~ 130	1.000	30	72	12.5 15.5	135 ^{-0.085}	135+0.07	254	100	115	23	8.5	_	4.0	24	19	M18×1.5	21
	TL10 - 24	588 ~ 1860 60 ~ 190		50	/2	19.5		100 0	2.54	100	115		0.0		4.0	24			
	TL14 - 10	882 ~ 2666 90 ~ 272		40	100	15.5 19.5	183 ^{-0.07}	183+0.07	356	145	150	31	13	13	4.0	29	27	M26×1.5	52
	TL14 - 15	1960 ~ 3920 200 ~ 400	500	40	100	23.5	100 - 0.12	2 103 0	550	145	150	51	15	13	4.0	27		M20 × 1.5	52
	TL20 – 6	2450 ~ 4900 250 ~ 500		50	130	15.5 19.5	226 ^{-0.07} -0.12	226 ^{+ 0.07}	508	185	175	36	15	18	4.0	31	36	M32×1.5	117
	TL20 - 12	4606 ~ 9310 470 ~ 950		50	130	23.5	220 - 0.12	220 0	508	105	1/5	50	15	10	4.0	51	50	1102 ^ 1.5	

Note : 1. All products are MTO.

2. If the model larger than TL20-12 is required, contact Tsubaki Emerson.

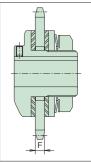
S110114 TL350-2-B9.5

3. The torque values above are values for continuous slip torque, intended for protecting the equipment from overload.

4. For the selection of bush length, refer to the Selection page.

TL200-3	350			TL500-7	00			TL10-20			
Without b		With bus	h	Without b		With bus	h	Without b		With bus	h
Product code	Model No.	Product code Model No.		Product code	Model No.	Product code	Model No.	Product code	Model No.	Product code	Model No.
S110701	TL200-1L	\$110711	TL200-1L-B3.8	S110704	TL500-1L	\$110714	TL500-1L-B6.5	S110006	TL10-16	\$110123	TL10-16-B12.5
S110001	TL200-1	\$110721	TL200-1L-B6.0	S110004	TL500-1	\$110725	TL500-1L-B9.5	S110016	TL10-24	\$110124	TL10-16-B15.5
S110011	TL200-2	\$110101	TL200-1-B3.8	S110014	TL500-2	S110115	TL500-1-B6.5	S110017	TL14-10	\$110125	TL10-16-B19.5
S110702	TL250-1L	\$110102	TL200-1-B6.0	S110705	TL700-1L	\$110116	TL500-1-B9.5	S110018	TL14-15	S110126	TL10-24-B12.5
S110002	TL250-1	\$110103	TL200-2-B3.8	S110005	TL700-1	\$110117	TL500-2-B6.5	S110019	TL20-6	S110127	TL10-24-B15.5
S110012	TL250-2	\$110104	TL200-2-B6.0	S110015	TL700-2	\$110118	TL500-2-B9.5	S110020	TL20-12	S110128	TL10-24-B19.5
S110703	TL350-1L	\$110712	TL250-1L-B4.5			\$110715	TL700-1L-B9.5			\$110129	TL14-10-B15.5
S110003	TL350-1	\$110722	TL250-1L-B6.5	-		S110726	TL700-1L-B12.5			\$110130	TL14-10-B19.5
S110013	TL350-2	\$110105	TL250-1-B4.5	-		S110119	TL700-1-B9.5			S110131	TL14-10-B23.5
		\$110106	TL250-1-B6.5	-		S110120	TL700-1-B12.5			\$110132	TL14-15-B15.5
		\$110107	TL250-2-B4.5	-		S110121	TL700-2-B9.5			\$110133	TL14-15-B19.5
		\$110108	TL250-2-B6.5	-		S110122	TL700-2-B12.5			S110134	TL14-15-B23.5
		\$110713	TL350-1L-B4.5	-						\$110135	TL20-6-B15.5
		\$110723	TL350-1L-B6.5	-						\$110136	TL20-6-B19.5
		\$110724	TL350-1L-B9.5	-						S110137	TL20-6-B23.5
		\$110109	TL350-1-B4.5	-						\$110138	TL20-12-B15.5
		\$110110	TL350-1-B6.5	-						\$110139	TL20-12-B19.5
		S110111	TL350-1-B9.5	-						S110140	TL20-12-B23.5
		\$110112	TL350-2-B4.5	-							
		\$110113	TL350-2-B6.5	-							
		C110114	TI 250 0 PO 5	-							

Finished bore Torque Limiter with sprockets



- Finished bore Torque Limiter and finished sprockets are available for quick delivery. If sold as a combination, torque is pre-set before shipment.
- With sprocket
- Sprocket comes standard with TL200 to TL700.
- Bores and keyways are already finished

Bore finishing is standard for Torque Limiter TL200C to 700C.

Easy torque setting

Because the adjustable nut or adjustable bolt is set at the predetermined 120° , it is easy for the customer to set torque. (Subject models for torque pre-setting)

Sprocket and bore finishing dimension table

Torque	Finished bore			Sprockets											
Limiter Model No.	diamet	er(mm)	Туре	F(mm)	Bush length (mm)	No. of teeth	No. of teeth	(kg)							
TL200	200 11.12.14. 10		RS35	$4.3 - {0 \atop 0.25}$	3.8	20,21,22,23,24,25,26,27,28,30	-	0.3							
11200	11,12,14,	10	RS40	7 - 0.35	6.0	16,17,18,19,20,21,22,23,24,25,26	-	0.33							
TL250	12,14,15,16,	14,15,16, 17		7 - 0.35	6.5	22,23,24,25,26,27,28,30	21,32	0.85							
11250	18,19,20,22	17	RS50	50 7 _0.25 6.5 18,19,20,21,22,23,24,25,26,27,28		17	0.92								
			RS40	7 - 0.35	6.5	26,27,28,30,32,34,35,36,38	40,42,45	1.55							
TL350	18,19,20, 22,24,25	-	RS50	7 - 0.25	6.5	22,23,24,25,26,27,28,30,32	21,34,35,36	1.68							
			RS60	10 - 0.30	9.5	-	18,19,20,21,22,23,24,25,26,27,28,30	1.91							
	22,24,25,		RS50	7 - 0.25	6.5	30,32,34,35,36,38,40,42,45	48,50	4.3							
TL500	28,30, 32,35,38,	29,33,36	RS60	10 - 0.30	9.5	25,26,27,28,30,32,34,35,36,38	40	4.7							
	40,42		RS80	13 - 0.30	9.5	-	19,20,21,22,23,24,25,26,27,28,30	5.2							
	35,40,42,45,	32,33,36,	RS60	10 - 0.30	9.5	35,36,38,40,42,45,48,50,54	-	10.7							
TL700	50,55,60,	38,43,46,	RS80	13 - 0.30	12.5	26,27,28,30,32,34,35,36,38	-	11.2							
	63,64	48,52,56,57	RS100	RS100 16.5 - 0.30		-	21,22,23,24,25,26,27,28,30	12.2							
Delivery	% 1	% 1				% 1	*2	_							

 Delivery
 #1 = Ex.-Japan 4weeks by sea

 #2 = Ex.-Japan 6weeks by sea

 1. Delivery dates are listed in each column. If ordering the finished bore and with sprocket combination, the longer time of delivery applies.

 2. If a finished bore is a size other than that listed in the chart above or hardened teeth are needed, it may be possible to provide this. Contact TEM for a consultation.

 3. The thickness of sprocket F is different from the thickness of the standard sprocket.

 4. For Torque Limiter dimensions, refer to pages 59 and 60.

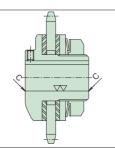
The mass of the above is based on rough bore and minimum number of sprocket teeth.
 On TL200, setting to the shaft by hexagon socket head set screw is not possible. Use a snap ring for the shaft or end plate.

Model No.

Size

No. of disk springs No. of sprocket teeth Sprocket Model No.(RS40) Bore diameter New JIS key normal type

Set torque(Unit: kgf.m, no number if no torque setting)

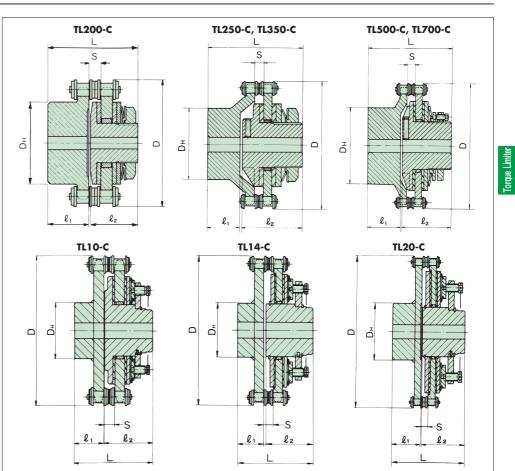

Chamfer and finish

Bore diameter	Chamfer dimensions
ϕ 25 and less	C0.5
ϕ 50 and less	C1
ϕ 51 and above	C1.5

Torque setting

· Torque setting is done at 120 ° on the "Tightening Amount - Torque Correlation Graph". When using the Torque Limiter, set the torque based on 120° with the adjusting nuts or bolts.

- Bore and keyway specifications • The bore tolerance is H7.
 - The keyway is New JIS (JIS B 1301-1996) "normal type"
 - · Set screws are included.



Torque Limiter coupling

The Torque Limiter coupling is a flexible coupling that uses a Torque Limiter and special type sprocket, and is connected by 2 rows of roller chains.

Centering the shaft coupling is easy and handling is simple. The Torque limiter acts as an automatic safety device, protecting machinery from damage due to overload.

• Torque Limiter unit of TL200-1LC, TL250-1LC and TL350-1LC have a spacer between the disk spring and lock washer.

Unit : mm

	Set torque range	Max. rpm	Rough bore diameter Max. shaft diameter Dimension							nsions			Mass	
Model No.	N·m {kgf·m}	(r/min) *	Coupling side	Torque Limiter side	Coupling side	Torque Limiter side	Sprocket	D	D _H	L	l 1	l 2	S	kg
TL200-1LC	1.0 ~ 2.0 {0.1 ~ 0.2}													
TL200-1C	2.9 ~ 9.8 {0.3 ~ 1.0}	1200	8	7	31	14	RS 40-16T	76	50	55	24	29	7.5	1.0
TL200-2C	6.9 ~ 20 {0.7 ~ 2.0}													
TL250-1LC	2.9 ~ 6.9 0.3 ~ 0.7													
TL250-1C	6.9 ~ 27 [0.7 ~ 2.8]	1000	13	10	38	22	RS 40-22T	102	56	76	25	48	7.4	1.9
TL250-2C	14~54 {1.4~5.5}													
TL350-1LC	9.8 ~ 20 {1.0 ~ 2.0}									103	37	62	9.7	
TL350-1C	$20 \sim 74$ $ 2.0 \sim 7.6 $	800	13	17	45	25	RS 50-24T	137	72					4.2
TL350-2C	34~149 3.5~15.2													
TL500-1LC	$20 \sim 49$ $\{2.0 \sim 5.0\}$												11.6	
TL500-1C	$47 \sim 210 \ 4.8 \sim 21.4 $	500	18	20	65	42	RS 60-28T	188	105	120	40	76		10
TL500-2C	88~420 9.0~42.9													
TL700-1LC	49~118 {5.0~12}													
TL700-1C	116~569 {11.8~58.1}	400	23	30	90	64	RS 80-28T	251	150	168	66	98	15.3	26
TL700-2C	223~1080 {22.8~111}													
TL10-16C	392~1274 40~130	300	33	30	95	72	RS140-22T	355	137	189	71	115	26.2	66
TL10-24C	588 ~ 1860 60 ~ 190	500	55	50	75	12	KJ140-221	333	1.57	107		115	20.2	00
TL14-10C	882 ~ 2666 90 ~ 272	200	38	40	118	100	RS160-26T	470	167	235	80	150	30.1	140
TL14-15C	1960 ~ 3920 200 ~ 400	200	50	40	110	100	K3100-201	470	10/	235	- 30	130	30.1	140
TL20-6C	$2450 \sim 4900 250 \sim 500 $	140	43	50	150	130	RS160-36T	631	237	300	120	175	30.1	285
TL20-12C	4606 ~ 9310 470 ~ 950	140	40	50	150	150	100-001	001	2.57	300	120	1/5	50.1	205

1. The products in bold are all stock items. The rest are MTO.

2. * If you intend to use the Torque Limiter at max. rpm, apply a lubricant like molybdenum disulfide to the chain and sprocket teeth. If you intend to use the Torque Limiter at an rpm above the maximum listed above, consult with TEM for more information.

3. If the model larger than TL20-12 is required, contact Tsubaki Emerson.

Torque Limiter coupling with finished bore

Finished bore products are available for quick delivery.

Bores and keyways are already finished

Bore finishing is standard for Torque Limiter couplings TL200C to 700C.

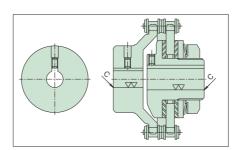
Finished Bore Dimension Chart

Unit : mm Finished bore dimensions Torque Limiter Coupling Model No. Torque Limiter side Coupling side TL200-1LC TI 200-1C 10,11,12,14 10,11,12,14,15,16,17,18,19,20,22,24,25,28,29,30 TL200-2C TL250-1LC 15,16,17,18,19,20,22,24,25,28,29,30,32,33,35, TL250-1C 12,14,15,16,17,18,19,20,22 36,38 TL250-2C TL350-1LC 15,16,17,18,19,20,22,24,25,28,29,30,32,33,35, TL350-1C 18,19,20,22,24,25 36,38,40,42,43,45 TL350-2C TL500-1LC 20,22,24,25,28,29,30,32,33,35,36,38,40,42,43, TL500-1C 22,24,25,28,29,30,32,33,35,36,38,40,42 45,46,48,50,52,55,56,57,60,63,64,65 TL500-2C TL700-1LC 32,33,35,36,38,40,42,43,45,46,48,50,52,55,56, 25,28,29,30,32,33,35,36,38,40,42,43,45,46,48, TL700-1C 57,60,63,64 50,52,55,56,57,60,63,64,65,70,71,75,80,85,90 TL700-2C Date of delivery Ex.-Japan 4 weeks by sea

1.For finished bore and hardened teeth specifications outside those written in the above chart, please conact TEM for more information.

Model No.

<u>TL250 - 2C - T18J×C30J - 5.0</u>


Size No. of disk springs Torque Limiter side bore diameter Keyway type: (J: new JIS normal type) Coupling side bore diameter Keyway type: (J: new JIS normal type) Set torque (unit: kgf \cdot m, no number is displayed when torque is not set)-


Chamfer and finish

Bore diameter	Chamfer dimensions
ϕ 25 and less	C0.5
ϕ 50 and less	C1
ϕ 51 and above	C1.5

Bore diameter and keyway specifications

- · Bore diameter tolerance is H7.
- · The keyway is New JIS (JIS B 1301-1996) "Normal type"
- · Setscrews are included.

Selection

If using the Torque Limiter with human transportation or lifting devices, take the necessary precautions with equipment to avoid serious injury or death from falling objects.

T From the machine's strength and load, as well as other information, set the trip torque at the point where it should not go any higher. This torque is the Torque Limiter slip torque.

When the limit value is not clear, calculate the rated torque by using the rpm of the shaft where the Torque Limiter is installed and rated output power of the motor. Then, multiply by 1.5 to 2.0. This is the Torque Limiter slip torque.

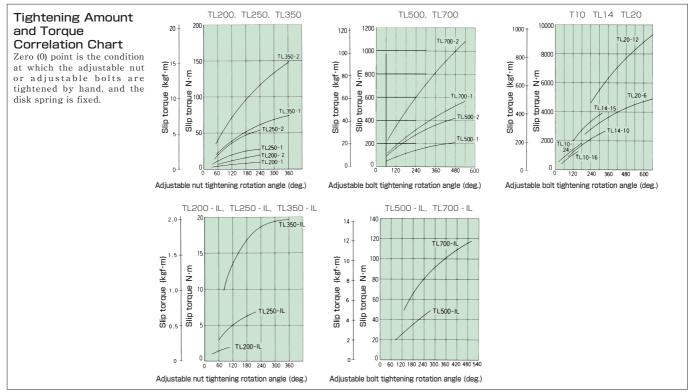
Slip torque should be lower than rated torque.

BUsing the dimension table, verify that the maximum allowable bore diameter of the Torque Limiter is larger than the installation shaft diameter. If the installation shaft diameter is bigger, use a Torque Limiter one size larger.

Depending on the thickness of the center member which is clamped, use an appropriate length of bushing. Select a bush by referring to the bush length in the dimension table. Use a single bush or a combination of bushes, whichever is longest without exceeding the thickness of the center member.

Torque setting -

Torque Limiter slip torque is set by tightening the adjusting nuts or bolts.


After installing the Torque Limiter to the equipment, tighten the adjusting nuts or bolts gradually from a loose position to find the optimal position.

In addition, by using the "Tightening Amount - Torque Correlation Charts" below, the tightening amount of the adjusting nut and bolts for slip torque can be found. However, due to the condition of the friction surface and other factors, the torque for the fixed tightening amount changes.

Using the graph as a rough guide, try test operating the Torque Limiter with the tightening amount slightly loose, then tighten gradually to find the optimal position. This is the most practical method.

When slip torque stability is especially important, hand tighten the adjusting nut or bolts as much as possible, and then slip approximately 500 times for running-in at a wrench-tightened 60° more. If the rotation speed is fast, split several times and subject it to 500 slips.

2With the center member, the torque can be set to the specified amount. In this case, it is necessary to use a finished bore.

Center member selection and manufacture

Sprockets, gears, V pulleys, etc. can be used as a center member with the Torque Limiter. If the customer intends to select or manufacture the center members by themselves, take the following precautionary steps:

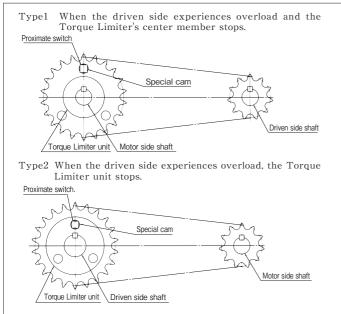
T For the Torque Limiter's outer diameter, the minimum diameter of the center member is restricted. When using a sprocket with a chain drive, refer to page 66 for minimum number of teeth.

2Finish the friction face sides of the center member (both sides) in 3s - 6s.

BFor the bore diameter of the center member, machine it within the center member bore diameter tolerance from the dimension table in 3s - 6s.

The width in which the center member is clamped should be within the S dimension in the dimension table.

5When the center member is a timing belt pulley or a V-belt pulley, position the pulley equally on the right and left sides of the friction facing so that the belt tension will be applied equally.


• For the specification of the pulley and other parts, contact TEM.

Torque Limiter's operation detection

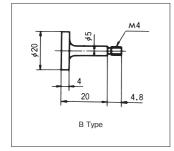
When overload occurs, the Torque Limiter slips and protects the machine, but if the driving source is not stopped, the Torque Limiter will continue to slip. If it continues to slip, the friction facing will be abnormally worn and become unusually hot, making it necessary to stop the drive source immediately.

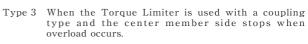
The following are examples that detect Torque Limiter slips and stop the drive by using a proximate switch and digital tachometer.

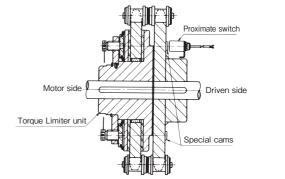
Installation examples

Slip can be detected within approximately 1 to 10 seconds based on the rotational detection speed if the number of special cams selected is shown in the chart.

Number of Special cams	Rotational detection speed range r/min	Number of Special cams	Rotational detection speed range
1	6 ~ 60	6	1.0 ~ 10
2	3~ 30	7	$0.85 \sim 8.5$
3	2~20	8	0.75 ~ 7.5
4	1.5 ~ 15	9	0.67 ~ 6.7
5	1.2 ~ 12	10	0.6 ~ 6.0

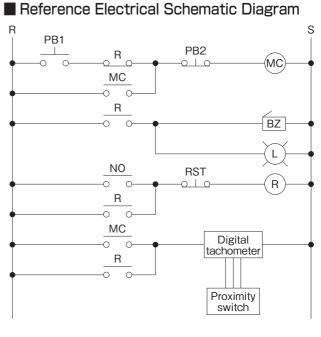

Number of special cams and rotational detection speed


Note: In the case of 6 r/min and slower, the range is that of $6\sim 60 r/\text{min}$ divided by the number of special cams.


Special cam dimensions and installation

The special cam is fixed by a screw on the driven side. Use a screw lock to lock the screw.

Special cam for reference



Type 4 When the Torque Limiter is used with a coupling type, and the main unit side stops when overload occurs.

For the installation of Type 4, it is quite difficult to install the special cams, so as much as possible avoid using this type. When using the Torque Limiter with the coupling type, use Type 3.

- PB1 : Motor start button
- PB2 : Motor stop button
- RST : BZ, L reset button
- MC : Electromagnetic contactor for motor
- R : Auxiliary relay
- NO : Digital tachometer output a contact
- BZ : Buzzer
- L : Lamp

Digital tachometer: OMRON H7CX-R11

Proximity switch: OMRON TL-N5ME2

Note)

We recommend OMRON digital tachometers and proximate switches for the above. For more information, refer to the OMRON catalog.

Sprockets for the center member

When using the sprocket as a center member, refer to the notes below. In the below chart, the sprocket is used as a center member for the chain drive.

(1)Minimum number of teeth in which the chain does not interfere with the special cam (same as the reference drawing of the previous page) when using installation types 1 and 2 of the previous page.

(2)Minimum number of teeth in which the chain does not interfere with the friction facings of the Torque Limiter.

(3)Bush length

(4)Sprocket bore diameter (center member bore diameter)

Torque Limiter only and in the case the special cams shown in the previous page are used in type 2.

	Sprocket bore	Min. No. of sprocket teeth																	
Torque Limiter	diameter	RS35			S40	RS		RS		RS		RS1			120		140		160
Model No.	(center member bore diameter)	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length	Min.No. of teeth	Bush length
TL200	30 ^{+ 0.03}	△ 20		16	6														
TL250	41 ^{+ 0.05}			20	6.5	17	6.5												
TL350	49 ^{+ 0.05} ₀			26	4.5	21	6.5	18	9.5	15	9.5								
TL500	74 ^{+ 0.05}					△ 29 (30)	6.5	25	9.5	19	9.5								
TL700	105 + 0.05 0							△ 33 (35)	9.5	26	12.5	21	12.5	18	12.5				
TL10	135 ^{+ 0.07}											△ 29 (30)	12.5	24	15.5	△ 22	19.5		
TL14	183 ^{+ 0.07}											△ 39 (40)	15.5	△ 33 (35)	15.5	△ 29	19.5	△ 26	23.5
TL20	226 ^{+ 0.07}											△ 54	15.5	△ 46 (60)	15.5	△ 40	19.5	△ 35	23.5

Note: Those marked with " riangle " are not standard A type sprockets. When using a standard stock sprocket, use the number of teeth in ().

In the case the special cams shown in the previous page are used in type 1.

	Sprocket bore								Min. N	Vo. of s	procke	t teeth							
Torque Limiter	diameter (center member bore diameter)		RS35		RS40		RS50		RS60		RS80		00	RS120		RS1			60
Model No.		Min.No. of teeth	Bush length																
TL200	30 ⁺ 0.03 0	△ 25	3.8	19	6.0														
TL250	41 ^{+ 0.05} ₀			24	6.5	20	6.5												
TL350	49 ⁺ 0.05 ₀			30	4.5	24	6.5	21	9.5	17	9.5								
TL500	74 ^{+ 0.05}					32	6.5	△ 28 (30)	9.5	21	9.5								
TL700	105 ⁺ 0.05 ₀							36	9.5	△ 28 (30)	9.5	△ 23 (24)	12.5	20	12.5				
TL10	135 ^{+ 0.07} 0											△ 31 (32)	12.5	26	15.5	△ 23	19.5		
TL14	183 ^{+ 0.07}											△ 41 (45)	15.5	35	15.5	△ 30	19.5	△ 27	23.5
TL20	226 ^{+ 0.07}											△ 56 (60)	15.5	△ 47 (60)	15.5	△ 41	19.5	△ 36	23.5

Note: Those marked with " riangle " are not standard A type sprockets. When using a standard stock sprocket, use the number of teeth in ().

Axial Guard

Features

The Axial Guard is a new type of mechanical type overload protection device for mechanisms where the load acts linearly, such as pushers or cranks.

Highly accurate trip load

Even with repeated loads, the fluctuating trip load variation is always within $\pm 15\%$.

Non-backlash

High rigidity means no backlash for overweight axial loads.

Easy load adjustment

By simply turning the adjustable screw, load can be adjusted. In the tensile or compression direction, the Axial Guard trips at almost the same load.

Release type

When overload occurs, the Axial Guard immediately trips and the connection between the drive side and load side is shut off. The drive side's thrust does not transmit.

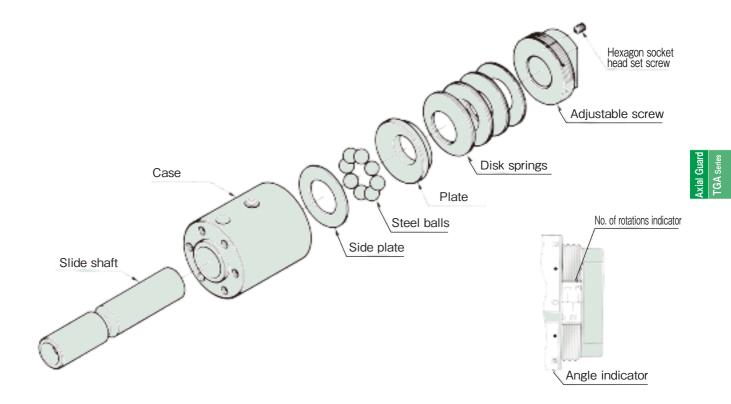
The resetting requires a small load, making it easy to reset.

Easy installation

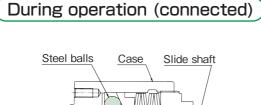
The end faces of the case and slide shaft have tap holes for easy built-in design.

Standard stock

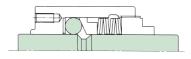
All Axial Guards are in stock.



Series name —

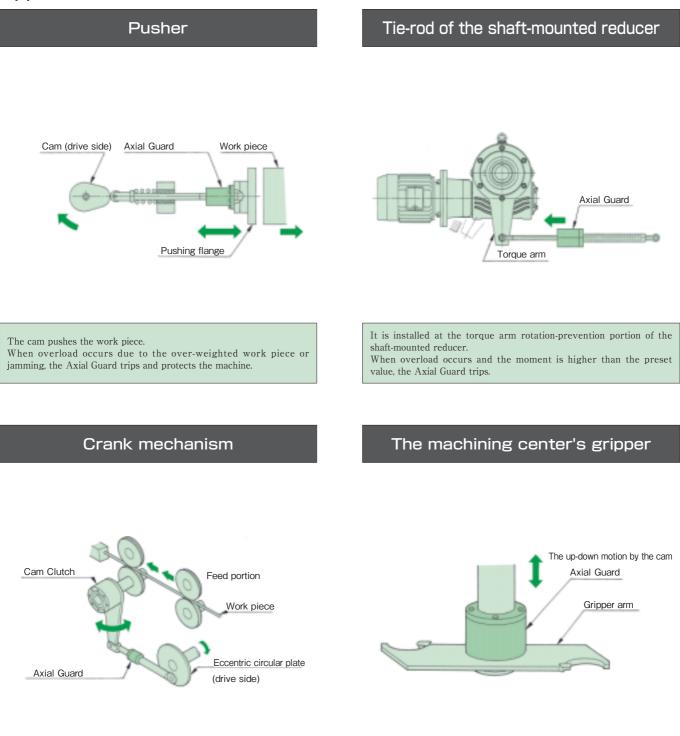

Maximum setting load(kgf): 65, 150, 250, 350 (4 sizes)

Construction


Operating principles

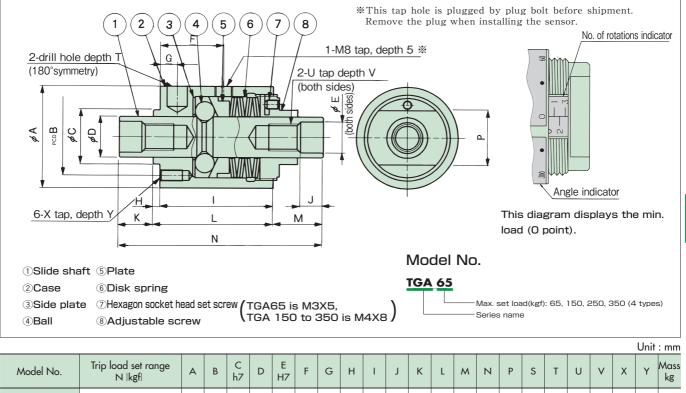
Groove

Because the metal ball is held in its groove, thrust from the case (or slide shaft) is transmitted to the load side.

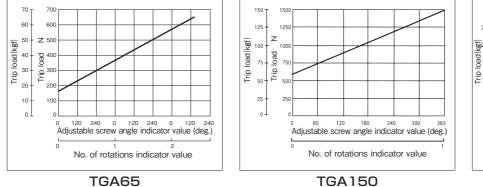


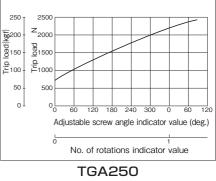
When the load exceeds the pre-set value, the metal ball pops out of its groove; the connection between the slide shaft and the case disengages, and moves in a free state.

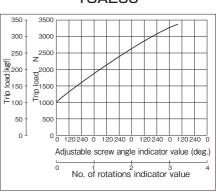
Axial Guard


Applications

The combination of the crank and Cam Clutch motion sends the wire rod. When a foreign object gets caught up in the machine or the wire rod is deformed, overload occurs and the Axial Guard trips, thus protecting the feed portion. When a tool is being changed, the gripper portion is driven in the axial direction by the cam mechanism. When a tool gets caught up or the gripper hits the obstacle, the Axial Guard trips, thus protecting the cam and gripper from damage.

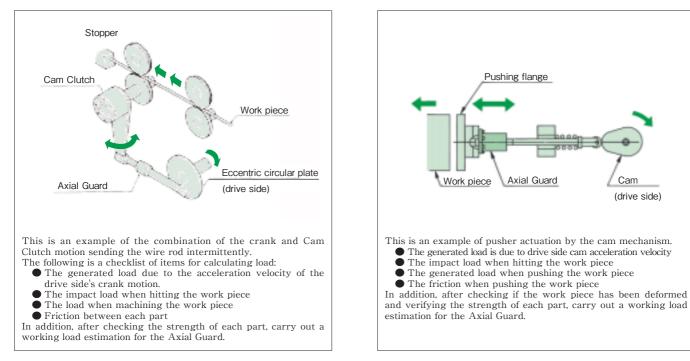



Transmissible capacity/dimensions



TGA65	147~ 637 { 15~65 }	33	23	14	10	7	22.5	5	2	40	5	5	42	11	58	16	5	7.5	M 6	7	MЗ	6	0.2
TGA150	588 ~ 1470 { 60 ~ 150}	38	28	18	14	10	24	6	2	43	7	8	45	19	72	21	7	8	M 8	10	M4	8	0.4
TGA250	735 ~ 2450 { 75 ~ 250}	45	34	24	18	14	28	7.5	3	50	10	15	53	22	90	24	8	9	M12	14	M5	10	0.7
TGA350	980 ~ 3430 {100 ~ 350}	56	44	28	22	16	34	9	3	63	10	20	66	24	110	30	10	12	M14	15	M6	10	1.2

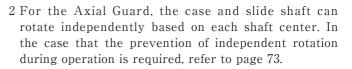
Load Curve (Tightening Amount-Load Correlation Diagram)

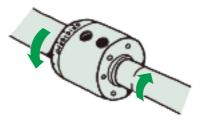

TGA350

Guide to calculating load

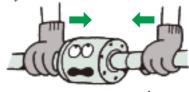
In order for the Axial Guard to be most effective as a safety protection device, install it on the driven side in the area where overload is most likely to occur.

Determining trip load

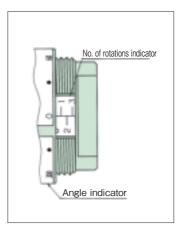

From the machine's strength and load, as well as other information, set the trip load at the point where it should not go any higher. When the limit value is not clear, it is decided by the load calculation (refer to the example below). As the low load on the equipment gradually increases, determine the appropriate set load.

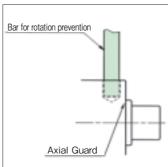


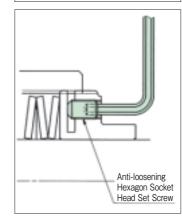
Caution


1 For most situations, avoid using the Axial Guard with human transportation or lifting devices. If you decide to use an Axial Guard with these devices, take the necessary precautions on the equipment side to avoid serious injury or death from falling objects.

3 When resetting, the slide shaft or case rapidly/ suddenlymoves in the shaft direction, causing mechanical shock. Therefore, do not reset the Axial Guard by hand or touch it directly.

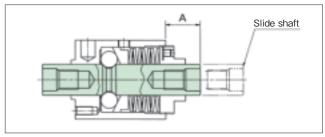

Never reset manually !




How to set the trip load

1 All Axial Guards are shipped with the load set at the minimum point (min. load). Confirm that the number of rotations indicator and angle indicator are set at "0". (Refer to the diagram on the right)

- 2 Loosen the hexagon socket head set screw to prevent loosing of adjustable screw.
- 3 From the information in the "Tightening Amount Load Correlation Chart" on page 70, find the tightening angle of an equivalent adjustable screw for the predetermined trip load. Tighten to 60° less than the predetermined angle.
- 4 Next, carry out a load trip test. Gradually tighten to optimal trip load and set.
- 5 When the load has been set, tighten the hexagon socket head set screw to prevent loosing of adjustable screw portion, and verify that the set screw is locked. (Refer to the diagram on the right)


The No. of rotations indicator displays how many times the adjustable screw has rotated from the minimum load. If the end face of case is between 0 and 1, it indicates less than 1 rotation (less than 360). As well, the angle indicator indicates how many degrees the adjustable screw has turned. The degree amount is indicated by the No. of rotations indicator indicator's centerline. The total of the adjustable screw's number of rotations (1 rotation=360°) and angle indicator is the rotation angle of the adjustable screw. (Example)

If the No. of rotations indicator is between 0 and 1, and the angle indicator shows 180°, the adjustable screw is turned to 180° position from minimum torque.

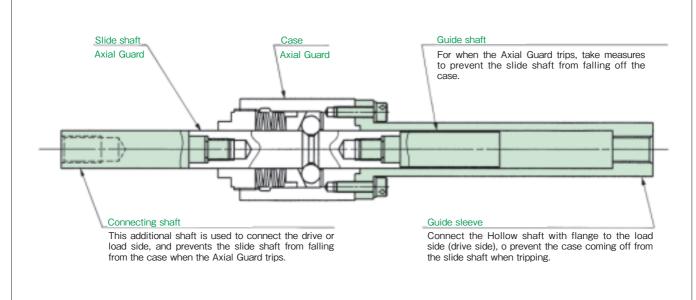
When turning the adjustable screw, to prevent the Axial Guard from turning together with the adjustable screw, insert the bar into the drilled hole at the outer diameter of the cover.

Model No.	* Axial direction load for reset	Dimension A when resetting
TGA 65	83 N{8.5 kgf}	11
TGA150	196 N{20 kgf}	19
TGA250	343 N{35 kgf}	22
TGA350	490 N{50 kgf}	24

* At Max. load

Reset

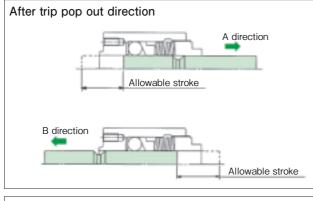
- 1 Before resetting, stop the machine and remove the cause of overload.
- 2 It is reset automatically when restarting the drive side (motor) to reverse load direction of trip direction. Turn the input (motor) using low rpm or inching. The axial load that is necessary for resetting is listed in the chart on the right.
- 3 When the Axial Guard resets, it makes a distinct "click" sound. To check whether the Axial Guard has reset, refer to dimension A in the diagram on the right.

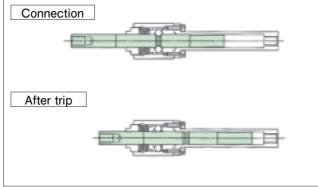

When resetting, the slide shaft or cover rapidly moves in the axial direction, causing mechanical shock. Therefore, do not reset by hand or directly touch the Axial Guard.

72

Caution

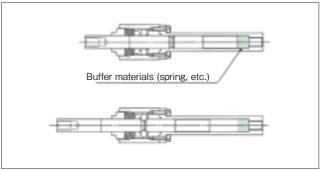
Auxiliary parts

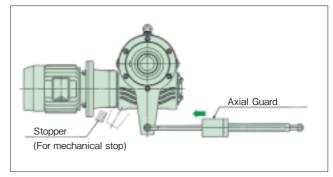

By incorporating the auxiliary parts in the below diagram, it is easier to use the Axial Guard.



Axial Guard allowable stroke (Axial Guard unit only)

If the Axial Guard exceeds the stroke limits from the table below, the slide shaft will come out. In this case, the ball will fall out and the Axial Guard's functions will be lost. If after tripping the stroke is more than what is listed in the below table, connect the connecting and guide shafts.

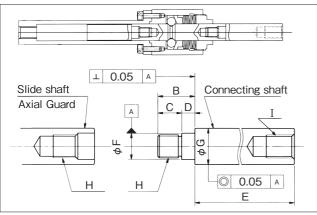

Model No.	TGA65	TGA150	TGA250	TGA350
A direction allowable stroke	14	20	30	38
B direction allowable stroke	14	22	24	26


1. The mechanical stop limits stroke after trip

In the case of stopping the stroke at a certain position by sensor detection when tripping, it will become necessary to use a backup mechanism for stopping. Install a spring or other such buffer material to absorb the stroke.

2. When installing at shaft-mounted reducer tie rod

This is an example of the application being used for shaft-mounted reducer torque arm as an overload protection device. Load direction is rotational direction, and the reducer rotates when tripping. Because of the reducer rotation, after the sensor detects overload and stops the motor, it stops mechanically at a certain position. For possible applications and model numbers, contact TEM.

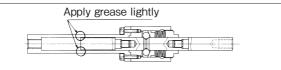


Recommended manufacturing dimensions for auxiliary devices

When installing a connecting shaft, guide shaft, guide sleeve or bolt to an Axial Guard, apply an adhesive for metal to the threaded portion to prevent loosening. (Loctite, etc.) (TEM recommends Loctite 262.)

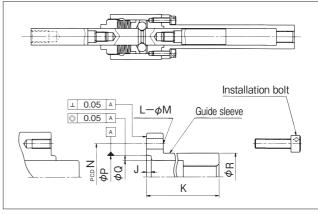
1. Guide shaft, connecting shaft

Use the tap hole at the end face of the slide shaft to connect the guide and connecting shafts. The recommended dimensions of the connecting portion are in the diagram below.


Model No.	B (0 - 0.2)	C (0 - 0.2)	D	E	F (h7)	G (h9)	H screw size	l * screw size
TGA65	10	6	4		7	10	M6×P1.0	M6×P1.0
TGA150	15	9	6	Select by installation	10	14	M8×P1.25	M8×P1.25
TGA250	22	13	9	length, stroke, etc.	14	18	M12×P1.75	M12×P1.75
TGA350	23	14	9	SILOKE, EIC.	16	22	M14×P2.0	M14×P2.0

* Not necessary for guide shaft

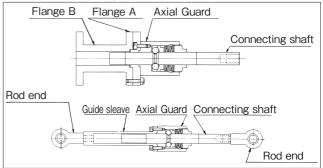
Installation


1. Installing to the machine

- (1) Before installing the Axial Guard to the machine, completely wipe off any dust or dirt from the slide shaft, the spigot facing of the case and taps.
- (2) Next, connect the slide shaft and the case tap portion. TEM recommends an adhesive for metals be applied to the tap portion or the bolt outer diameter to prevent any loosening. (Loctite 262 recommended)
- (3) Make sure not to fix both the Axial Guard slide shaft side and the case side when installing the Axial Guard. The Axial Guard has no coupling function, so if it is installed too rigidly it will not properly function, potentially causing a malfunction or machine damage.
- (4) When the guide sleeve and guide shaft are connected to the Axial Guard there is a possibility that the inner diameter of the guide sleeve and the outer diameter of the guide shaft end face may interfere. Just in case, apply grease to the portion on the diagram below. (Refer to the maintenance section on page 74 for information about grease brands.)

2. Guide sleeve

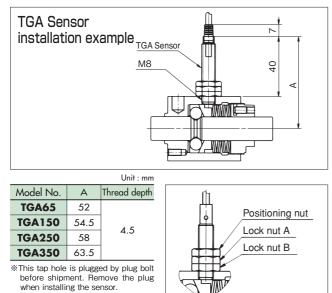
Use the tap holes at the end face of the case to connect the case and guide sleeve. The recommended dimensions of the connecting portion are in the diagram below.


Model No.	$ \begin{pmatrix} J \\ + 0.2 \\ 0 \end{pmatrix} $	К	L	м	Ν	P (H7)	$ \begin{pmatrix} J \\ + 0.2 \\ 0 \end{pmatrix} $	C (0 - 0.2
TGA65	2.5		6	3.4	23	14	10.5	16
TGA150	2.5	Select by installation	6	4.5	28	18	14.5	20
TGA250	3.5	length, stroke, etc.	6	5.5	34	24	18.5	24.5
TGA350	3.5	siroke, eic.	6	6.6	44	28	22.5	31

- * When the Axial Guard is installed vertically, (lengthwise direction) grease may leak through the gap between the slide shaft and case or the adjustable screw. To avoid any problems, make sure to replenish grease at frequent intervals. (Refer to page 74 for maintenance information)
- * Do not use the Axial Guard if there is a possibility that a falling accident of the drive or load side may occur when tripping. Such an accident may lead to serious injury or machine damage.

2. Overload detection

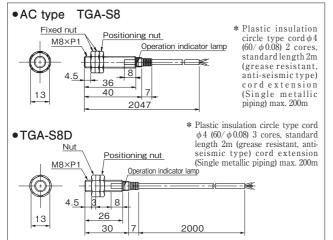
When using the Axial Guard, make sure to combine it with the sensor mechanism to ensure that overload can be properly detected. (Refer to page 75 for overload detection information)


Installation example

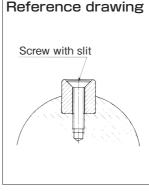
74

Overload detection

When using the Axial Guard make sure to use the TGA sensor to detect trip during overload.


Fix the TGA Sensor to the case by screwing it into the tap holes. After fixing the sensor to the case, screw on lock nut A last to make it lock in place (double nut). (The positioning nut is glued with an adhesive, so do not

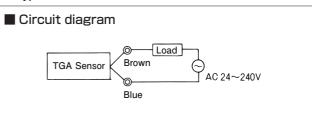
forcibly rotate it.)


TGA Sensor Specifications

		AC type	DC type			
Mode	el No.	TGA – S8	TGA – S8D			
Power	Rating	$AC24 \sim 240V$	$DC12 \sim 24V$			
voltage Possi	ble use range	$AC20 \sim 264 V (50/60 Hz)$	$\rm DC10\sim 30V$			
Current co	onsumption	Less than 1.7mA(at AC200V)	Less than 13mA			
Control output (op	en, close capacity)	$5\sim 100 { m mA}$	Max. 200mA			
Indicator lamp		Operation indicator				
Ambient operating temperature		$-$ 5 \sim + 70 $^\circ\!\mathrm{C}$ (no condensation)				
Ambient operating humidity		$35 \sim 95\%$ RH				
Outpu	ut form	NC (Output open/close c detecting sensor plate				
Operati	ion form	_	NPN			
Insulation resistance		More than 50M Ω (at DC500V mega) Charge portion - Case				
M	ass	Approx. 45g	(with 2m cord)			
Residua	l voltage	Refer to characteristic data	Less than 2.0V (Load current 200mA, 2m cord length)			

Measurement Diagram

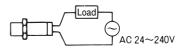
When using the TGA Sensor it is necessary to stop the slide shaft side and case side rotation. As in the diagram below, stop rotation by putting the slide key between the guide sleeve and the guide shaft. For other methods, contact TEM for more information.


Like the diagram on the left, fix the slide key to the shaft with a slotted head countersunk screw (JISB1101). Screw sizes are listed below.

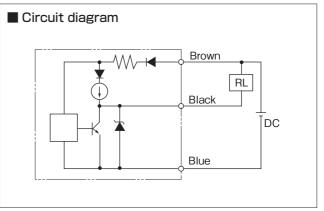
Model No.	Screw size
TGA65	M2
TGA150	M2
TGA250	M2
TGA350	M3

TGA Sensor handling

Refrain from striking, swinging or putting excessive force on the detecting portion.


AC type TGA-S8

Not necessary to consider TGA Sensor's polarity (brown, blue)


Precautions for wiring

• Make sure to connect the load at first, then turn on the power. If the power is turned on without connecting the load, it will be damaged.

• In order to prevent malfunction or damage due to surge or noise, insert the TGA sensor code in a individual piping when it runs close to the power cable.

DC type TGA-S8D

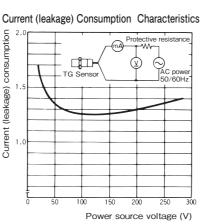
About choosing load and wiring

Connecting to the power source

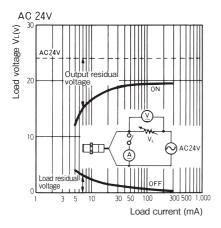
Make sure to connect to the power source through load. A direct connection will break the elements inside.

Metal piping

In order to prevent malfunction or damage, insert the proximity switch code inside a metal pipe when it runs close to the power cable.

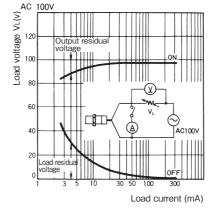

Surge protection

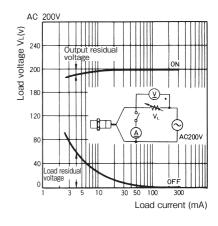
In the case where the TGA Sensor is near a device that generates a large surge (motor, welding machine, etc.), the TG Sensor contains a surge absorption circuit, but also insert a varistor to the source.


• The effect of current consumption (leakage)

Even when the TGA Sensor is OFF a small amount of current continues to flow to keep the circuit running. (Refer to the "Current Consumption (leakage) Graph".) Because of this, a small voltage occurs in the load that can sometimes lead to reset malfunction. Therefore, confirm that the

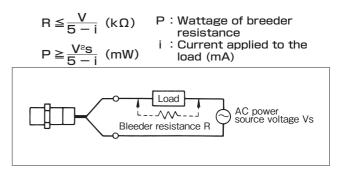
voltage of the load is less than the reset voltage before use. As well, if using the relay as load, depending on the construction of the relay, a resonance may occur due to the current leaks when the sensor is OFF.




Residual Voltage Characteristics

Maintenance

The Axial Guard is packed in grease for shipment. Add the grease shown in the right table once a year or every 100 trips.


Kyodo Oil	Sumitomo Lubricant	Dow Corning	SΠ
Grease HD	Low temp grease	Molykote 44MA Grease	Solvest 832

• When power voltage is low

When power source voltage is lower than AC48V and load current is less than 10mA, the output residual voltage when the TGA Sensor is ON becomes large. When it is OFF, the residual voltage of load becomes large. (Refer to "Residual Voltage Characteristics of Load".) Take caution when using the load such as a relay operated by voltage.

When load current is small

When load current is smaller than 5mA, residual voltage of load becomes large in the TGA Sensor. (Refer to "Residual Voltage Characteristics of Load".) In this case, connect the breeder resistance with load parallel, apply load current at more than 5mA, and set the residual voltage less than return voltage of load. Calculate the breeder resistance and allowable power using the following calculations. TEM recommends to use $20k\Omega$ at AC100V and more than 1.5W (3W), and $39k\Omega$ at AC200V and more than 3W (5W) for safe. (If heat generation becomes a problem, use the Wattage shown in ().

• Load with large inrush current

As for the load with large inrush current (1.8A and above) such as a lamp or motor, the opening and closing element can be deteriorated or be broken. In this case, use along with a relay.

MEMO

Safety Devices

Electronic

Shock Relay

	Features	p79
	Applications	p80
	Series reference chart	p81
	Notes when selecting: Special type and summary of additional specs	p82
	Shock Relay SC Series	p83~p93
	Shock Relay ED Series	p94~p96
Ħ	Shock Relay 150 Series	p97~p100
	Shock Relay SS Series	p101~p103
	Shock Relay SA Series	p104~p106
	Shock Relay SU Series	p107~p108
	Shock Relay 50 Series	p109~p110

Shock Relay SM Series p111

Shock Relay

Swiftly detects equipment overload!

The Shock Relay is a current monitoring device that quickly detects motor overload, thus protecting your equipment from costly damage.

1

Features

1. Instantly detects overcurrent

When the motor current exceeds the predetermined current value, the relay contact signal can be output after a preset time.

For example, when a foreign object gets caught up in the conveyor, the Shock Relay sends a signal causing an emergency stop, thus minimizing equipment damage.

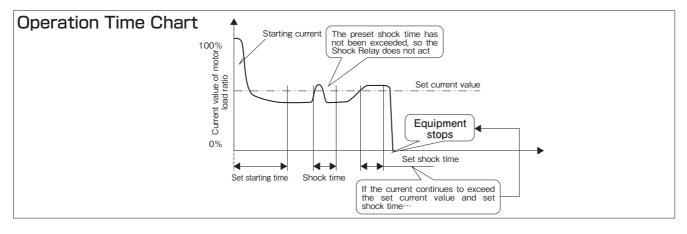
It's not a thermal relay

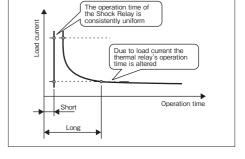
The purpose of the thermal relay is to protect the motor from burnout. When the motor current continually exceeds the rated value for a certain period of time, an abnormal signal is sent to protect the motor from burnout. Generally, it takes a long time for operation to begin, so <u>it is not suitable for</u> <u>equipment/machine protection</u>.

2. Easy to install on existing equipment

The Shock Relay is an electrical protection device.

In the case that the Shock Relay is added to existing equipment, it is not necessary to make major modifications to the device as in the case of the mechanical type.


Because the Shock Relay is installed inside the control panel, it can function outdoors or in harsh environments.


3. The abnormal signal is only output under abnormal conditions

The Shock Relay sends an abnormal signal when overcurrent continues to exceed the preset period of time.

Sometimes during normal operation conveyors will experience insignificant short time current overloads due to reasons such as the current pulsation of the equipment, or when packages are put on the conveyor.

By using the shock time function these small overloads will not be recognized as overloads, therefore avoiding nuisance stoppages.

	Operation time	Protected object
Shock Relay	Short	Equipment
Thermal Relay	*Long	Motor

*If the motor current slightly exceeds the preset value, the thermal relay will not work. Even if it does work, it will do so slowly.

	Existing equipment	Environment
Electrical	Easy to install later	Built inside the panel
Mechanical	Difficult to install later	Necessary environmental precautions

SAFCON

Product Applications

SC Series

Mixer

Operation

- 1. When mixing has just started and the load is heavy, the mixer operates at a low speed.
- 2. When the load becomes lighter after some time of mixing, an output signal of 4 to 20mA is sent to a sequencer to switch the mixing to a higher speed.

Key Points

Output of 4 to 20mA which enables actions according to the actual load.

ED Series

Lifting device for illumination and screens

Operation

- 1. Due to over-installation of the lighting system, when the total weight of the baton exceeds the permissible load, the lifting device will be automatically shut down.
- 2. When the lifting device becomes overloaded during operation it automatically shuts down.

Key Points

During operation the motor current is displayed digitally, and allowable load and stopping due to overload can be set as a digital numeric value.

SS Series

Operation

Protects the conveyor from damage when a tool gets caught in its belt.

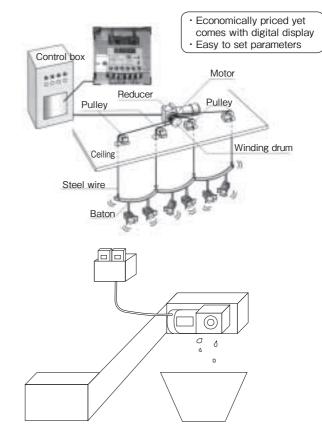
Key Points

The driver has been made more compact and less expensive.

- *A built-in Shock Relay in the motor terminal box type is available.
- Ideal for the hollow type reducer (for applications where it is difficult to install a mechanical safety device)
- Easy to change settings
- Even with large torque the SS Series retains its compact size

SU Series

Pump


Operation

Prevent the pump motor from burnout due to water shortage.

Key Points

Compact body, economical, and test function

Series Specifications

Series name				150 Series	SS Series	SA Series	SU Series	50 Series	SM Series
Model No.		$\begin{array}{c} {\sf TSBSCB/S06} \\ \sim {\sf TSBSCB/S60} \end{array}$	TSB020ED-1, -2 ~ TSB550ED-1, -2	TSB151, 152	TSBSS05 \sim 300	$\begin{array}{c c} \text{TSBSA05} \sim & \text{TSBSU05-2} \\ 300 & \sim \text{TSBSU60-2} \end{array}$		TSB50	TSBSM02
	Features	Digital display, Communication function selectable self- holding/automatic reset type	Digital display, economical, selectable self- holding/automatic reset type	Analog display, self-holding type	Economical, self-holding type	Economical, automatic reset type	Economical, self-holding type Under-load Detection Type	Economical, automatic reset type	Economical, automatic reset type
Motor	(kw) 132 90 75 22 with external CT 0.2 0.1								
	Power source (V)	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220 400/440	200/220
C	Dperation setting level	Ampere (A)	Ampere (A)	The ratio of motor-rated current value (%)	Ampere (A)	Ampere (A)	Ampere (A)	The ratio of motor-rated current value (%)	Ampere (A)
S	tart time setting range	$0.2 \sim 12.0$ s adjustable	$0.2 \sim 10.0$ s adjustable	$0.2\sim 20$ s adjustable	$0.2\sim 30 \mathrm{s}$ adjustable	$0.2 \sim 10$ s adjustable	No	3s (fixed)	1.5s (fixed)
Sł	ock time setting range	0.2 ~ 5.0s adjustable	0.2 ~ 5.0s adjustable	$0.2\sim$ 3s adjustable	$0.3 \sim 10 \mathrm{s}$ adjustable	$0.2\sim 5 { m s}$ adjustable	$0.2\sim 30s$	0.3 ~ 3s adjustable	1s (fixed)
Operation power source		AC100 ~ 240V	$100 \sim 120 V \text{ or}$ $200 \sim 240 V$	AC100/110V or AC200/220V 50/60Hz	AC100 ~ 240V	AC100 ~ 240V	AC200 ~ 240V	AC100/110V or AC200/220V 50/60Hz	≈1 AC90 ~ 250V
Con	dition of output relay after activation	Selectable; self-holding or automatic reset	Selectable; self-holding or automatic reset	Self-holding	Self-holding	Automatic reset	Self-holding	Automatic reset	Automatic reset
	Test function	0	0	0	0	0	0	×	×
	Operation display	LED digital display	LED digital display	LED light	LED light	LED light	LED light	×	×
*2	Open phase, reverse phase, phase unbalance detection	0	×	×	×	×	×	×	×
	Alarm output	0	×	\bigtriangleup	×	×	×	×	×
	DIN rail installed	0	0	×	0	0	0	×	×
	Display meter	Digital meter current value display	Digital meter current value display	Analog meter % display	×	×	Х	×	×
С	T (current transformer)	Built-in (for large capcity motors, external CT is used together.)	Built-in	External CT separate	Built-in (for large capcity motors, external CT is used together.)	Built-in (for large capcity motors, external CT is used together.)	Built-in	External CT separate	Built-in
els %	Impact load detection	×	×	\bigtriangleup	×	×	×	×	Please consult
Special models	1A input	×	×	\bigtriangleup	×	×	×	×	
Spec	Lower and upper limit detection	0	×	\bigtriangleup	×	×	×	×	TEAM
*4	Conforms to UL/cUL standards	×	0	×	\bigtriangleup	×	×	×	×
×5 د	CE marking	0	0	×	0	×	×	×	×
ation	Subtropical specifications	×	×	\bigtriangleup	×	×	×	\bigtriangleup	
ecific	Support for abnormal voltage of control power supply	*3 ×	*3×	\bigtriangleup	*3×	*3×	%3×	\bigtriangleup	Please consult
al sp∈	Panel installation	*6	×	\bigtriangleup	×	×	×	×	TEAM
tiono	Start time modification	×	×	\bigtriangleup	×	×	×	\bigtriangleup	IEAM
Additional specifications	Shock time modification	×	×	\bigtriangleup	×	×	×	\bigtriangleup	
'	Automatic reset	0	0		×	0	×	0	0

\bigcirc ...Standard specs \triangle ...Special MTO \times ...Not available

Notes: %1. This is the added voltage fluctuation range of use in regard to nominal voltage.

%2. Open phase the motor lacks 1 phase.

- Phase reversal the phase of the power supply to the motor becomes inverted.
- Phase unbalance ... the phase current becomes unbalanced. The maximum value of the phase current is detected when it is greater than or equal to 2 x the minimum value.
- %3. Even the voltage for operation is not standard, it is possible to use the standard units if the voltage fluctuation is taken into consideration and the voltage is within the above range.
- %4. For more information, refer to page 82.

%5. CCC approval is not granted.

%6. Panel mounting type must be selected.

Selecting a Shock Relay

 When used with human transportation equipment or lifting devices, install a suitable protection device on that equipment/ device for safety purposes. Otherwise an accident resulting in death, serious injury or damage to equipment may occur.

2. CT (current transformer)

The CT is essential for current detection (150 Series, 50 Series only). For more information about the appropriate CT, refer to the page of each series.

 Model Selection for Special Capacity and/or Motor Voltage.

Normally a Shock Relay can be selected by motor capacity, but when the motor capacity and/or motor voltage is special (a standard Shock Relay can be used up to a maximum of 600V), select a Shock Relay based on the rated motor current value (set current range).

4. Operation Power Source

The operation power source described in the chart is the standard. For operation power voltages other than the standard, the SS, SA, SC and SM Series have flexible power supplies. The 150 Series with a special operation power source is available as a special MTO product.

5. Output Relay Operation

The output relay operation consists of two modes: The activation type and the reverting type when overcurrent is detected.

In the event of a power outage, make sure to switch off the machine as the sudden activation of the output relay may cause an accident or equipment damage.

1) Activation type when overcurrent is detected

The output relay is activated (contact inverts) only when overcurrent is detected.

Corresponding Models ED Series, SA Series, SM Series, 150 Series, 50 Series

2) Reverting type when overcurrent is detected When the power source for the Shock Relay is

ON, the output relay is activated (contact inverts). When overcurrent is detected, the output relay reverts to its original state.

Corresponding Model SS Series

3) Activation type/ Reverting type

It is possible to switch between these two modes.

6. Self-holding and Automatic Resetting

The methods used for output relay resetting are the self-hold and automatic resetting types.

1) Self-holding type

Even after overcurrent has stopped, the selfholding mode continues to function. In order to return it to normal operation, push the RESET button or cut the operation power supply.

Corresponding Models SS Series, 150 Series

2) Automatic Reset Type

The output relay automatically resets after overcurrent is gone.

Corresponding Models SA Series, SM Series, 50 Series

3) Self-holding Type/ Automatic Resetting Type It is possible to switch between the above two modes.

Corresponding Models ED Series, SC Series

7. Inverter Drive Applicability

- 1) Detection accuracy decreases but generally if it is in within the 30 - 60Hz range, it should be insignificant.
- 2)Even within the 30 60Hz range, when the inverter accelerates and decelerates, and the current increases or decreases, the Shock Relay can sometimes cause an unnecessary trip. Slowly accelerate and decelerate or set it so that there is some leeway in load current within the allowable range.
- 3) Connect the CT to the secondary side of the inverter, but make sure to connect the Shock Relay operation power source to a commercial power source (never connect it to the secondary side of the inverter).

8. Note

When the inertia of the equipment/ machine is large or the speed reduction ratio from the motor is large, the Shock Relay may sometimes not work. Conduct a trial test first before putting it into regular use.

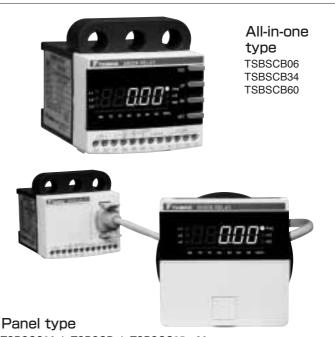
A Refer to the manual for further details.

Outline of Special Models and Additional Specifications (Special models are available based on the 150 or 50 Series.)

Special models	Outline of specifications	Special unit model
Impact load detection	Separately from the usual overload, abnormally large current is instantly detected and outputted. Impact load settings can be set from 30%-300%. Impact load shock time is within 0.05s. Other functions and outline dimensions conform to product standards.	TSB151M TSB152M
1A input	TSB152C	
Upper-lower limit detection	Detects both overload and under-loads; however, because there is 1 output relay, it cannot distinguish between upper and lower limits.	TSB151W TSB152W
Additional specifications	Outline of specifications	Order symbol
Subtropical specifications	Can be used when ambient humidity is 90% RH and below. Other specifications conform to standard products.	S
upport for abnormal voltage of control power supply	Power source voltage: AC230V, AC240V, AC115V, AC120V (please contact us for more information on other voltages)	V
Panel installation	It can be mounted on the control panel surface and operated.	Р
Start time modification	The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 …). Other specifications conform to standard products.	TI
Shock time modification	The integral multiple can be extended for a maximum of 60 seconds. The front panel scale becomes an integral multiple (x2, x3 …). Other specifications conform to standard products.	T2
Automatic reset	For the 150 Series only, the self-holding output relay can be changed to automatic reset.	Н

Shock Relay SC Series

Features


Communication function which makes central monitoring of load in process possible It is possible to check the condition of the Shock Relay at each process and perform setting changes remotely by using monitoring software (PCON). A to 20mA output It is possible to check /analyze the load by performing an action adjusted to the actual load, or recording into the recorder. Face mount (Panel type) Panel type face mounting is available. The display portion can be separated from main unit, and can be installed at the control box panel. Under current detection output contact can be selected. Maintenance indicator Set the operational time until the next maintenance, and a notification will be given when the time is reached.

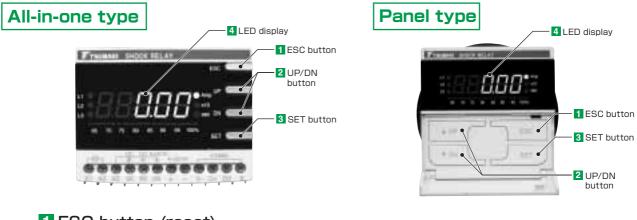
Thermal Energy (Inverse time characteristic) Switch to electrical thermal energy to protect the motor from burnout.

CE marking

Conformed RoHS

Standard specifications

TSBSCS06 + TSBSCD + TSBSCC05~30 TSBSCS34 + TSBSCD + TSBSCC05~30 TSBSCS60 + TSBSCD + TSBSCC05~30

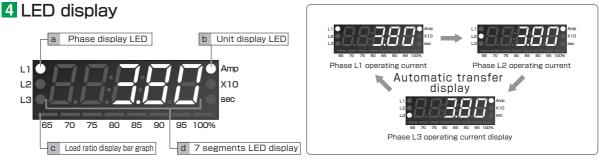

		All-in-one type		TSBSCB06	TSBSCB34	TSBSCB60				
Model No.		Panel type		TSBSCS06	TSBSCS34	TSBSCS60				
			4t	0.1kW	_	_				
	200V class		2t	0.2, 0.4kW	_					
5	2007 0.000	Number of wires pass	1t	0.75kW	1.5, 2.2kW 3.7, 5.5kW	7.5, 11kW				
Motor		through the CT hole	4t	0.2kW		-				
	400V class		2t	0.4, 0.75kW	2.2, 3.7, 5.5kW					
	400 1 01033		1t	1.5kW	7.5, 11kW	15, 18.5, 22kW				
	Frequenc	cy of detect current	11	1.5KVV	20 ~ 200Hz	15, 10.5, 22844				
		oltage of motor circuit			AC690V 50/60Hz					
		onal power source			100 ~ 240VAC±10%, 50/60Hz					
_	Operatio		4t	0.15 ~ 1.60A (0.01A)	100 ° 240 VAC±10 %, 50/00H2	(): Increment				
	Overcurrent	Number of wires pass	2t	0.30 ~ 3.20A (0.01A)						
	setting	through the CT hole				-				
			1t	0.60 ~ 6.40A (0.04A)	6.00 ~ 34.0A (0.2A)	10.00 ~ 60.0A (0.4A)				
		Start time		0 ~	~ 12.0s (0.2s and larger: Increment 0.	. l s)				
-		Shock time			0.2 ~ 5.0s (Increment 0.1s)	<u>,</u>				
	Accuracy	Current detection accure		±.	5% (In case of commercial power source	ce)				
ξļ		Time detection accur	асу		±5%					
		Under current			Trip at 0.2 \sim 5s (OFF: No action)					
		k when starting up			Set at 2 \sim 8 times of overcurrent setting value (OFF: No action) Trip after Start time + 0.2s when starting up.					
ונ	Loc	ck when operating		Set at 1.5 \sim 8 times of overcurrent setting value (OFF: No action), trip at 0.2 \sim 5s.						
2		Phase-reversal		Trip within 0.15s, (OFF: No action)						
-	Phase loss				Trip at 0.5 ~ 5s (OFF: No action)					
Ŀ	Imbalance			Trip at 1 ~	10s (OFF: No action) when setting at	10~50%				
		Alarm		Output when A, F and H are set (OFF: No action)						
		Running hour		Trip when 10 ~ 9990hr is set (OFF: No action)						
		Fail-safe		Activated when setting ON (Conducting normally: Excited, Trip: Non-excited)						
		Rated load		$3A,250VAC \ (\cos \phi = 1)$						
	Minim	num allowable load *1		DC24V, 4mA						
		Life		Activation 100,000times at rated load						
	C	ntact arrangement			OC:1c,AL/UC/TO:1a	•				
		Self-holding		E-r: Manual release or reset of power source, H-r: Only manual release						
	Reset	Auto-reset		A-r: Auto-reset and set the return time at 0.2s \sim 20min						
	Δ,	nalog output			Analog output 4 ~20mA DC Output (OFF: No action) Allowable load resistance: 100Ω and below					
		unication output			RS485/Modbus					
		nce (Between housing-circui	+1	DC500V 10MΩ						
	ectric strength	Between housing-circuit		2000VAC 60Hz 1min.						
Diel	voltage	Between relay conto		1000VAC 60Hz 1min.						
	volidge	Place	1015							
	۸	nbient temperature		Indoor, no water splash - 20 ~+ 60 °C						
		Ambient humidity								
Ĭ	F			30 ~ 85%RH (No dew condensation)						
eu		Altitude			2000m and below					
Se l		Atmosphere		No corrosive gas, oil-mist or dust						
5		Vibration		5.9m/s ² and below						
		er consumption			7VA and below					
	A	pprox. mass			0.3kg and below					

* 1: In case inputting the output relay contact to programmable controller (PLC) directly, input through the relay for minute current, because contact failure may happen due to minute current.

Shock Relay

Part name and Function

ESC button (reset)


Releases the trip or returns back to the initial setting display. Pushing the reset button after completing parameter settings to return back to initial screen.

2 UP/DN button (UP/DOWN)

Switch to parameter mode and change data settings.

3 SET button (set)

Confirm and register parameter setting data.

a. Phase display LED

Displays the phase (L1(R) \rightarrow L2(S) \rightarrow L3(T)) which shows the current, changes every 2 seconds.

- b. Unit display LED
- LED which Indicates the unit.
- c. Load ratio display bar graph

Can be utilized as a guide when setting OC (Overcurrent setting value). Displays the ratio as a percentage (%); Operational load current/OC current setting value

d. 7 segment LED

Displays operation current, parameter setting value, cause of trip, etc.

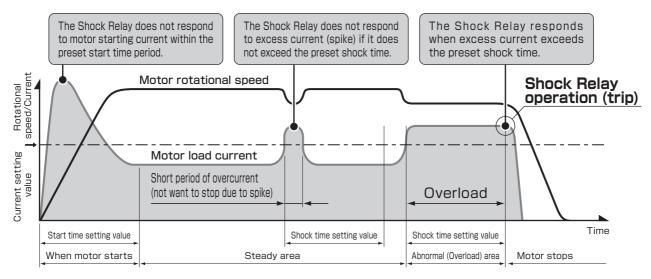
5 Terminal arrangement

		COMM
A1 A2 95 9	96 98 08 + -	V- D1 D0 S

Applicable wire

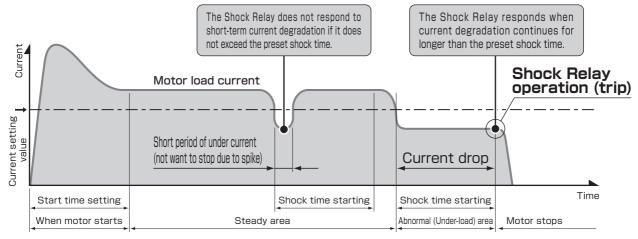
Wire: ISO 1 to 25mm², AWG#18 to 1475°C copper wire Strip length: 8mm

No. of connectable wires: Up to 2 for one terminal Tightening torque: 0.8 to 1.2N · m

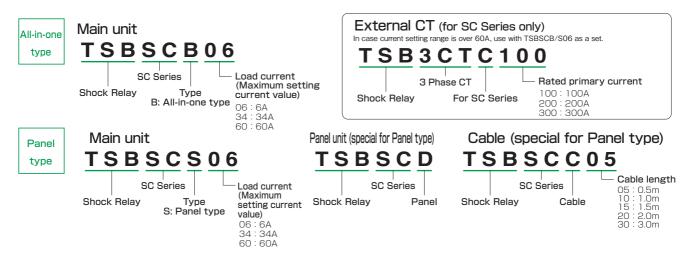

Terminal symbol	Function	Explanation
A1, A2	Operational power source	Connect AC100 to 240V, commercial power source
95	Common terminal	Terminal 96, 98, 08 common
96		b contact: Normal-close, Overcurrent-open (In case FS:OFF)
98	OC output	a contact: Normal-open, Overcurrent-close (In case FS:OFF)
08	AL/TO/UL output	Alarm output/Running hour output/Undercurrent output
+	Analog output	Output analog current DC4 to 20mA
_	Analog output	
V-, D1, D0, S	Terminal for communication	Connect when using communication function.

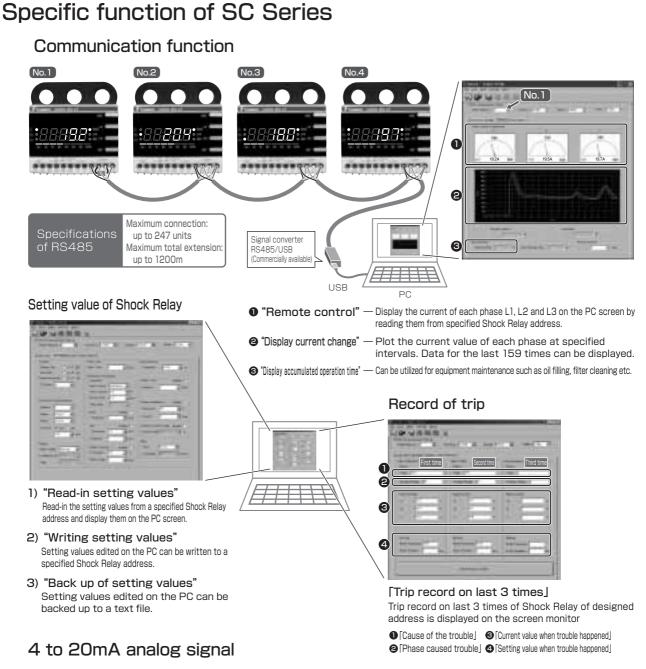
Digital ammeter functions

- 1) While in normal operation, it is possible to change the displayed phase, and set it. Release by pushing the ESC button.
- 2) Trip record (3 most recent) can be viewed by pushing and holding the ESC button 5 sec. or longer. Push the UP/DN buttons to cycle through and confirm current values (cycles L1 →L2→L3→L1→...). The order of the trip record appears on a bar graph in the order of 100%, 95%, and 90% for easy confirmation. Release by pushing the ESC button.


Operating mode

Overload operating mode

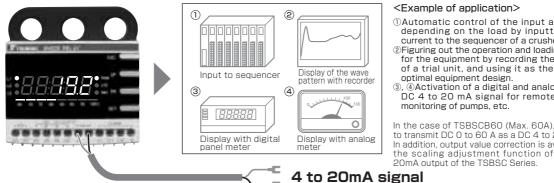



Light load operation (Under-load detection) mode

Once the motor current falls below the preset level, under-load is detected and a signal is sent to stop the motor. *For under-load detection, the output contact is set to alarm output. *However, in case of the under-load detection, the output contact becomes choice either alarm output.

Nomenclature

"What is a 4 to 20mA analog signal?"


A 4 to 20 mA analog signal is a standard instrumentation signal used around the world. Instrumentation signal:

· Voltage signal: DC 0 to 5 V, DC 0 to 10 V, etc.

· Current signal: DC 4 to 20 mA, DC 0 to 20 mA, etc.

Current signals are less susceptible to influence from noise than voltage signals.

In addition, DC 4 to 20, when compared to DC 0 to 20 mA, is more precise in the event of wire disruption or breaks. Therefore, DC 4 to 20 mA is used frequently, specifically in the case of long transmission distances (several tens of meters) or in answer to requests for reducing noise influence.

- ①Automatic control of the input and viscosity depending on the load by inputting the load current to the sequencer of a crusher or mixer.
- ②Figuring out the operation and loading conditions for the equipment by recording the load current of a trial unit, and using it as the basis for an
- Activation of a digital and analog meter with DC 4 to 20 mA signal for remote centralized

In the case of TSBSCB60 (Max. 60A), it is possible to transmit DC 0 to 60 A as a DC 4 to 20 mA signal. In addition, output value correction is available due to the scaling adjustment function of the DC 4 to

Shock Relay

Setup steps

ltem	Operation button	Operation instruction
1. Selection of parameter	UP/DN	Select the setting parameter by pushing the UP/DN buttons.
2. Preparation for setting	SET	The setting value begins blinking when the SET button is pushed after selecting a parameter.
3. Selection of setting	UP/DN	Push the UP/DN buttons until the desired setting value is shown.
4. Register of setting	SET	Press the SET button after selecting the setting value, the blinking value indication returns to normal and the setting value is registered.
5. Initial indication	ESC	Push the ESC button to return to the initial indication after completing the settings. In the case that no button is pushed, returns to initial indication automatically after 50 seconds.

Parameter

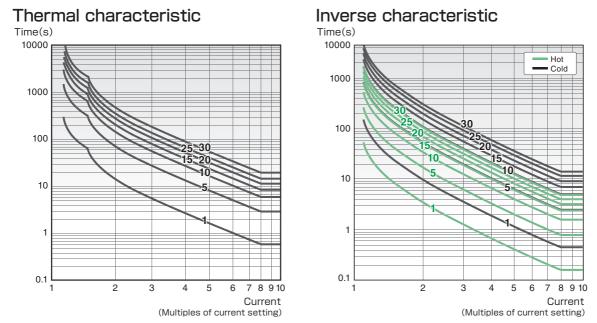
	lo. Menu Parameter		Explanation of function									
No.	IVIenu	Initial Value Setting Value										
			0	All parameter settings are possible.								
1	Parameter lock	PE: 0		To lock p	parameter settin	gs, input "1	" for every parc	ameter set.				
	I didilleler lock	,	1	To unloc complete		put "1", the	en "0". When	ΡΕ:	is displayed, t	he setting is		
	Selection of	Ph:3Ph	3Ph	Monitori	ng 3 phase mo	tor						
2	phase No.	<u>гп:э</u> гп	1Ph	Monitori	ng single phase	e motor.						
			dE	Operate	s with definite t	me characte	eristic.					
3	Operation	teedE	th	characte				cumulative	as in the case	e of thermal		
	curve		In	Operate 90.)	s with inverse	time charac	teristic. (Refer 1	o Inverse cl	naracteristic ch	art on page		
			no	Setting fo	Setting for disabling the upper limit detection.							
4	CT ratio	ck: 12	1t,2t,4t	Setting the number of motor wires that pass through the CT (1t: 1time, 2t: 2 times, 4t: 4 times) Type 34; only 1t and 2t, Type 60; only 1t								
			100,200,300	Select when using External CT (Type 06 only)								
			oFF	Normal mode When a trip occurs, the relay turns ON (95-96: Open, 95-98: Closed)						: Closed).		
5	Fail Safe	רזם:בר	on	Fail safe mode After the power is turned on, the relay turns ON (95-96: Open, 95-98: Closed); and when a trip occurs, the relay turns OFF (95-96: Closed, 95-98: Open). * This setting becomes effective after a power reset.								
6	Reverse phase detection	rP:oFF	oFF		n" when detecting							
				over 32/		aracteristics	t. For type 34 a "th" and "In" .		current value co	unit: (A)		
				CT D II	06 ty	ре	34 ty	pe	60 ty	pe		
				CT Ratio	Setting range	Increments	Setting range	Increments	Setting range	Increments		
				1t	0.60 ~ 6.40	0.04	6.00 ~ 34.0	0.2	10.0 ~ 60.0	0.4		
7	Over current threshold	oc:5.40°	See the right	2t	0.30 ~ 3.20	0.02	3.00 ~ 17.0	0.1				
				4t	0.15 ~ 1.60	0.01						
				100 12.0 ~ 128 1					Ź I			
				200	24.0~256	1						
				300	36.0~384	1						

Parameter

NIa		Parameter		Explanation of function		
No.	Menu	Initial Value	Setting Value	Explanation of function		
8	Start time	dt: 02 .	0	When setting the inverse characteristic "In", be aware that it operates in Cold characteristic from the starting of the motor until the current becomes lower than OC setting, and then operates in Hot characteristic after that.		
			0.2 ~ 12.0s	The relay does not output within the time setting, so as to not operate when the motor starts. When inverse characteristic "In" is set, it operates in Hot characteristic after Start time.		
9	Over current	ot: 02.	0.2~5.0s	Set continuous overloading time of the overcurrent setting.		
7	Shock time	cl5: 1.	1~30	Select the operation characteristic when inverse characteristic "th", "In" are set. (Refer to Thermal and inverse characteristic charts)		
10	Under current threshold	uc:0FF*	oFF	Set current value when detecting undercurrent. This cannot be set higher than the overcurrent value. Relay output for undercurrent is as follows: Alarm ALo is set to "except uc": outputs at OC terminal		
			See the right	Alarm ALo is set to "uc": outputs at AL/UC/TO terminals		
11	Under current Shock time	ut: 02.	0.2~5.0s	Set continuous under-loading time of under-current setting.		
12	Phase loss	PL:oFF	oFF on	Set to "on" in the case that phase loss is detected.		
13	Phase loss time	PLEOS.	0.5 ~ 5s	Set operation time in the case that phase loss is detected. When phase loss detection is set to oFF, it does not display.		
			oFF	Set to 10~50% in case imbalance is detected.		
14	Imbalance threshold	Ub:oFF	10 ~ 50%	Imbalance ratio (%) = (Max.Current-Min.Current) Max.Current ×100		
15	Imbalance duration	Ube: 1	1 ~ 10s	Set operation time in the case that an imbalance is detected. When imbalance detection is set to oFF, this does not display.		
16	Stall threshold	Sc:oFF	oFF 2 ~ 8 times	Set the ratio against overcurrent setting in the case of detecting the lock when starting. Setting range; Sc setting value $\times OC \leq 250A$. This parameter is not displayed when the start time is set to 0s.		
17	Jam threshold	JRoFF	oFF 1.5 ~ 8 times	Set the ratio against overcurrent setting in the case of detecting the lock when running. Setting range; JA setting value xOC \leq 250A.		
18	Jam fault duration	JE: 02.	0.2 ~ 5s	Set the operating time in the case of detecting the lock when running. When lock JA is set to oFF, it does not display.		
19	Analog Output range	r <u>5.6</u> .40°	See the right	Set the current value as analog current output scale for 20mA output. Refer to page 87 Current setting chart for setting range.		
	range		oFF	Set when disabling analog current output.		
			no	Set when disabling alarm output.		
		RL o:no	A F H	Set when enabling alarm output. Refer to the table on page 89.		
20	Alert		to	Set to trigger an output when the running hour is set.		
			UC	Set in the case of detecting under-load.		
		RL:oFF		Set the ratio against the OC current when alarm outputting.		

Parameter

No.	Menu	Parameter		Employed an office the			
INO.	IMenu	Initial Value	Setting Value	Explanation of function			
			E-r	Self-holding after trip, back in when power is reset or ESC button is pushed.			
21	Reset	r <u>E:</u> E = r -	H-r	Self-holding after trip, back in when ESC button is pushed.			
	Kesei		A-r	Automatic reset after tripping.			
		<i>Rr: 0</i> 5.	$0.2s \sim 20 min$	Set automatic reset time			
22	Reset limitation	rn:oFF	oFF	There is no limit to the number of resets			
22	Kesel mindhon		$1\sim 5$ times	Set the number of reset operations (within 30 minutes).			
23	Total running hour	- <u></u> <u></u> <u></u> - <u></u> <u></u> <u></u> - <u></u> <u>-</u> <u></u> - <u></u> - <u>-</u> <u>-</u> <u>-</u> <u>-</u>		Display total running hours			
24	Running hour	h-		Display operational time since inputting running hours setting time.			
25	Running hour setting	r h:oFF	oFF 10 ~ 99990hr	To output the running hours, set the number of hours. The running hours will be counted from the point when the input is completed.			
		<i>Rd</i> : 1	1~247	Set the communication address			
26	Communication	6P: 192	See the right	Set the communication speed 1.2, 2.4, 4.8, 9.6, 19.2, 38.4kbps			
20	setting	Pr:Eun	odd, Evn, non	Set the parity			
		LE:oFF	oFF, 1 ~ 999s	Set the waiting time until an error is displayed when there is communication trouble.			
27	Test mode	EESE		In the case that the set button is pushed when this is displayed, after 3 sec. + Shock Time, -End- is shown and relay is output.			


Alarm

Operational mode	When motor starts	Normal operation	When exceeding alarm setting value	When trips
Operational output 71 a: 7				
Flicker output RL a: F			<u>ls</u> ltime/s	2time/s
Hold output RL a: H		→	<mark>↓]s</mark>	

Trip display

Trip function	Indication	Contents of trip	Solution
Over current	°oc: 3.6°	After the preset Start time period, the current exceeds the upper setting value and continues to flow longer than the preset Shock time. Trip current is 3.6A.	Check the abnormality of machine
Phase loss	•PL -r	Trip due to phase loss of R(L1) phase	Check the abnormality of machine
Phase reversal	se reversal Trip due to phase reversal		Check phase sequence with phase sequence meter
Stall (Lock when starting)			Check the abnormality of machine
Jam (Lock when operating)	<i>⊾IR: 15.8</i> *	When motor is operating, the current exceeds Ja setting value and continues to flow longer than Jt setting time.	Check the abnormality of machine
Imbalance	.Ub: 4.2°	Current of each phase becomes imbalanced larger than the Ub setting value, and continues to remain imbalanced longer than the Ubt setting time.	Check the power source, motor and motor wiring
Under current	•uc: 15°	After the preset Start time period, the current under-runs the lower setting value and continues to flow longer than the preset Shock time. Trip current is 1.6A.	Check the abnormality of machine
Limitation of the number of auto- reset	rn£uL	Number of auto-resets after trip exceeds the setting value within 30 minutes.	Check the abnormality of machine

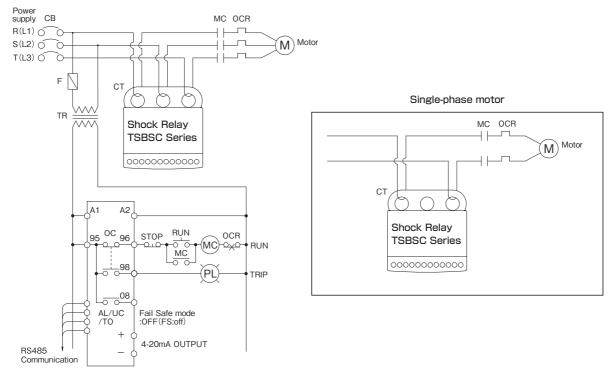
Inverse time characteristic charts

Number of motor wires that pass through the CT (current transformer) hole

Refer to the table below for the number of motor wires that pass through the CT. The values in this table are just a guide for when the motor is used at load ratio of 80 to 100%. In case that motor load ratio is low, increase the number of motor wires to pass through to improve the setting accuracy.

In addition, in case of motors not in the table below (Small size, single phase, different voltage, etc.), select and set an appropriate Model and number of motor wires that pass through the CT based on the setting current values.

	3 phase AC 200V class n	notor		3 phase AC 400V class motor			
kW	Applicable Shock Relay Model No.	Applicable Shock Relay Model No. Number of motor wires that pass through the CT k W		Applicable Shock Relay Model No.	Number of motor wires that pass through the CT		
0.1	TSBSCB/S06	4		—	—	-	
0.2	TSBSCB/S06	2		0.2	TSBSCB/S06	4	
0.4	TSBSCB/S06	2		0.4	TSBSCB/S06	2	
0.75	TSBSCB/S06	1		0.75	TSBSCB/S06	2	
1.5	TSBSCB/S34	2		1.5	TSBSCB/S06	1	
2.2	TSBSCB/S34	2		2.2	TSBSCB/S34	2	
3.7	TSBSCB/S34	1		3.7	TSBSCB/S34	2	
5.5	TSBSCB/S34	1		5.5	TSBSCB/S34	2	
7.5	TSBSCB/S60	1		7.5	TSBSCB/S34	1	
11	TSBSCB/S60	1		11	TSBSCB/S34	1	
-	_	-		15	TSBSCB/S60	1	
-	_	-		18.5	TSBSCB/S60	1	
_	_	-		22	TSBSCB/S60	1	


Note 1) Set the parameter "CT ratio" based on the number of motor wires that pass through the CT. 2) In case that the motor kW exceeds the above table, use external CT.

Specification of External CT

	Mode	el No.	TSB3CTC100	TSB3CTC300					
	Class			Grade 3					
I CT	Rated prim	nary current	100A	200A	300A				
External	Rated seco	ndary current		5A					
xte	Rated burden		5VA						
ш	Rated frequency		50/60Hz						
	Approx. mass		0.9kg						
ref.	+ Applicable main unit model No.			TSBSCB/S06					
	Adapted	200V class	15~18.5kW	22~37kW	45~75kW				
For	motor	400V class	30~45kW	55~90kW	110~132kW				

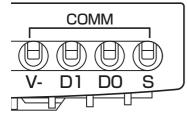
Wiring diagram

Basic wiring diagram

- Note) 1. If necessary, set transformer (Tr) depending on the voltage on the Shock Relay and electromagnetic contactor (MC). Install an isolating transformer if there is any harmonic noise generating device, such as an inverter.
 - 2. Output relay; Normal condition: not excited, Trip condition: excited 3. Coil capacity of MC connected with output relay of Shock Relay is;
 - Throw: less than 200VA, Hold: less than 20VA

As a guide, in case of TSBSCB60/TSBSCS60, set auxiliary relay, and activate auxiliary relay with output relay of the Shock Relay, and open/close MC with the contactor of the auxiliary relay.

Communication function


Communication specification

ltem	Content
Transmittance Standards	RS-485
Max. transmittance distance	1200m (Depends on transmittance speed)
Transmittance system	Half-duplex system Protocol: modbus
Transmittance speed	1.2k to 38.4kbps

Connection with signal converter

1) Prepare a signal converter to use the monitoring software (PCON) of TSBSC.

2) Use twist cables and connect as follows.

Terminal	Signal	RS485 Terminal
V-	GND	GND
D1	Data (B)	Tx+
DO	Data (A)	Tx-
S	Shield	Shield

Communication function

Monitoring software (PCON)

Monitoring software for PC is available.

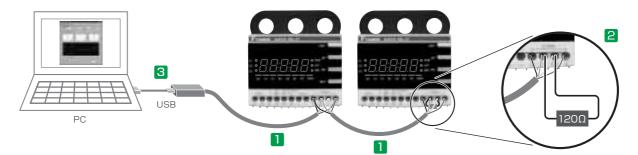
It is possible to communicate between PC and Shock Relay through a signal converter (RS485/USB; commercially available).

Main function

The following can be performed on the PC screen;

- \Diamond setting of the parameters for the Shock Relay
- \diamondsuit monitoring of the changes in the motor current
- \Diamond confirmation of the trip record

Things to prepare


- ① RS485/USB signal converter (commercially available)
- O USB cable (commercially available; which fits the size of slot of O)
- ③ Twist pair cable with shield (commercially available)
- (4) Terminating resistor (120 Ω , 1/4W and larger)
- ⑤ Special monitoring software "TSBSC PCON" CD-ROM * For ④ and ⑤, contact TEM.2

Connection method

- Connect the terminal V-, D1, D0 and S with the cable.
- Connect the terminating resistor 120Ω between terminating terminal D1 and D0.
- **3** Connect the PC and the signal converter with a USB cable.

- Communication setting at PCON side
- e Selection of the other communication party
- 3 Starting of the communication

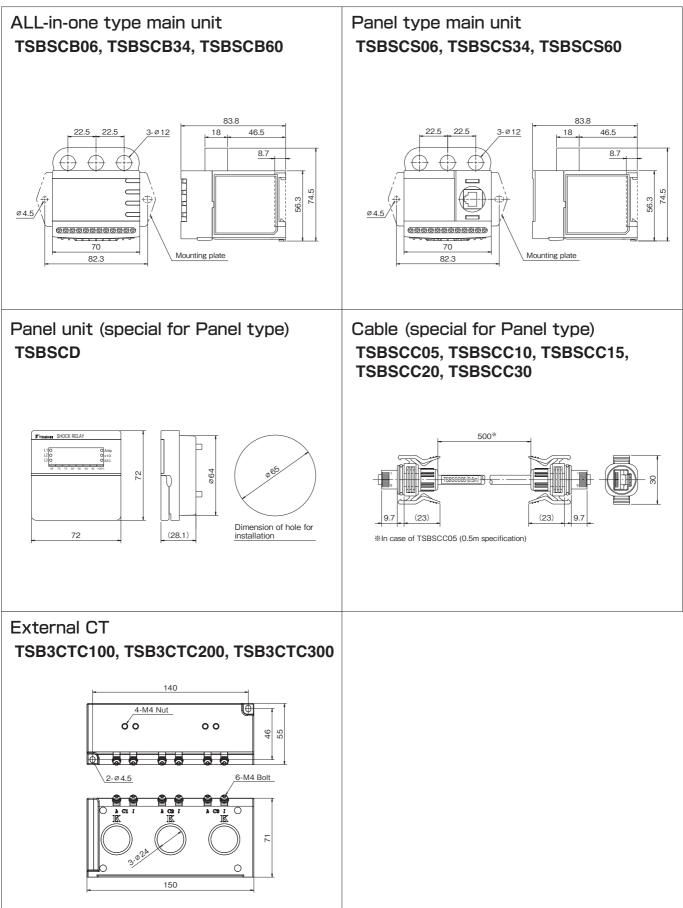
Setting the address of the main unit

Set the address and the communication method to each Shock Relay main unit in advance, before starting communication. Set the following item by calling up parameter 26 communications setting.

Address (1 to 247), Communication speed (1.2 to 38.4kbps), Parity (EVEN, ODD, non), Communication loss time (off, 1 to 999s)

Setting of the special software "TSBSC PCON"

First, install the special monitoring software and signal converter software to the PC.


- When the desktop icon is clicked, the software is activated, and the PCON operating display appears on screen. Set the communication settings for the PCON side to be the same as the communication method for the Shock Relay main unit.
- P In addition, select the PC port number in which the USB cable is connected, as [ComPort].
 Select the address of the Shock Relay of the other communication party.
- Generative address of the Shock helay of the of
 Click the link icon to begin communication.

*In the case that communication with a PLC (sequencer) is necessary without using PC monitoring software, consult TEM.

Getting method of the monitoring software (PCON)

Consult TEM.

Outline drawing

Shock Relay ED Series

Features

Displays both the motor current and each setting value digitally

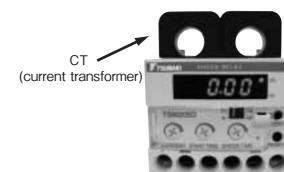
Economically priced

CT included in one compact unit

Works with inverter*

Current can be precisely detected when inverter is operating between 20 - 200Hz.

Choose between self-holding output relay and automatic reset


CE marking

UL · cUL certification

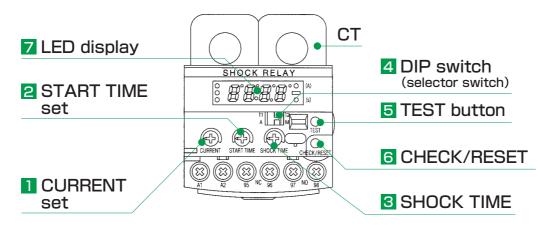
**To prevent an unnecessary trip due to an increase of amperage when accelerating and decelerating, slowly accelerate and decelerate or allow some leeway for set current.

Standard Specifications

CT all-in-one model

TSB020ED-1	TSB220ED-1
TSB020ED-2	TSB220ED-2
TSB075ED-1	TSB550ED-1
TSB075ED-2	TSB550ED-2

	Model		əl	Control power supply voltage 10		TSB020ED-1	TSB075ED-1	TSB220ED-1	TSB550ED-1			
				Control power supply voltage 200~240V		TSB020ED-2	TSB075ED-2	TSB220ED-2	TSB550ED-2			
			200V	No. of wires that pass through	T2	0.1kW	0.4kW	1.5kW	3.7kW			
		olicable	class	the CT hole, DIP switch ^{#4°}	T1	0.2kW	0.75kW	2.2kW	5.5kW			
Motor	m	iotors *1	400V	No. of wires that pass through	T2	0.1, 0.2kW	_	2.2, 3.7kW	7.5kW			
ž			class	the CT hole, DIP switch ^{#4°}	T1	0.4, 0.75kW	1.5kW	5.5kW	11kW			
			Frequenc	cy of motor current			20~2	200Hz				
			Maximum	motor circuit voltage			AC600V	50/60Hz				
Or	era	ting pov	ver supply	1			100~120VAC	±10%, 50/60Hz				
		ing por	wei soppiy	2			200~240VAC	±10%, 50/60Hz				
				No. of wires that	T2	0.20~1.20A	1.20~3.20A	3.00~10.0A	6.00~26.0A			
			ent setting	pass through	12	(0.01A increments)	(0.02A increments)	(0.1A increments)	(0.2A increments)			
ous	log	r	ange *3	the CT hole, DIP switch	T1	0.40~2.40A	1.80~5.80A	4.00~14.0A	9.00~34.0A			
unct	Overload		×3		11	(0.02A increments)	(0.04A increments)	(0.1A increments)	(0.25A increments) ^{*2}			
Protection functions				Start time ^{*3}			0.2~10.0s (0.2s increments)					
ecti	Shock time ^{**3}					0.2~5.0s (0.2s increments)						
Prot						$\pm 5\% \pm 1$ digit or less (except, when combined with the inverter, $\pm 10\% \pm 1$ digit or less)						
						$\pm 5\% \pm 1$ digit or less						
	Locked rotor start					It will trip if the set current value exceeds 200% when starting, after the set start time +0.2s has elapsed						
				Rated load		3A, 250VAC(cos <i>φ</i> =1)						
~				m allowable load		DC24V, 4mA						
Output relay				Life span		100,000 times at rated load						
put			Conto	act constitution				1b				
5 O			(Operation		Ũ	ation/normal operation: no e					
		Re	set	Trip reset,	А	After r	resetting to normal current va	1	lly reset			
-				DIP switch	М	Can be manually reset by pressing the "RESET" button						
d Insulation				n case and circuit			DC500\	,				
Withstand				n case and circuit		2000VAC 60Hz: 1 minute						
			Relay co	ontact electrodes)Hz: 1 minute				
ment	Location					Indoors, where i	<u> </u>					
Work environment				ent temperature		-20~+50°C						
ork en			Amb	pient humidity		30~85%RH (no condensation)						
Ň				Altitude				n or less				
Power consumption				er consumption		2.0W or less						
	Mass						0.25kg	or less				


*1. The applicable motors are just a rough indication for reference. Make your selection based upon actual electrical current value.

Select by electrical current value for single-phase motors as well. *2. Set values 10A and higher are displayed as described on the right due to a maximum number of display digits. 10.0A→10.2A→10.5A→10.7A→11.0A

 3.4 ± 1 digit error can occur with the current and the set time in the range indicated. 4. Be sure to make one turn when selecting T1 and two turns when selecting T2.

Shock Relay

Part Names and Functions

Current Setting (CURRENT)

Sets current at the value at which trip occurs.

2 Start Time Setting (START TIME)

Sets start time (start compensating time). When the motor starts, there is a possibility that the motor current will exceed the set current value, but during the start time period it will not trip.

Shock Time Setting (SHOCK TIME)

Sets shock time (output delay time). When the motor current exceeds the set current value the count begins, and when shock time has elapsed, it will trip.

4 DIP Switch (selector switch)

Setting	Purpose					
No. of motor leads that pass through the CT T1/T2	Current value set range selection	Τl	T1 No. of passes through the CT:1 T		No. of passes through the CT:2	
Trip reset A / M	Output relay reset selection	A	It automatically returns from the trip state 1 second after current value returns below the current setting value.	М	Trip state is maintained until the check/ reset button is pressed. It then resets.	

5 TEST Button (TEST)

When the LED displays current value, pressing the TEST button will carry out an operation test.

6 CHECK/RESET Button (CHECK/RESET)

[During normal operation]

By pressing the CHECK/RESET button when the LED displays current value, it switches to the setting screen.

[During trip]

When the CHECK/RESET button is pressed, trip is cleared and the display switches to the current value. [During set-up]

When the LED display is at the setting screen, pressing the CHECK/RESET button will switch between the current, start time, and shock time settings, in this order.

7 LED Display

Current value and set current are displayed when (A) is indicated on the display screen (to the left of the A). (A = ampere)

Start time and shock time set up are displayed when (s) is indicated on the display screen (to the left of the s). (s = second)

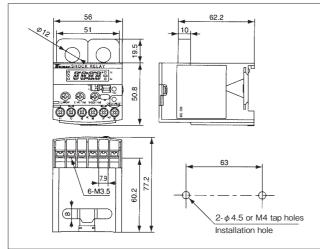
Shock Relay

The ED Series has the following features, which the Meter Relay (analog type) does not include:

- Start time (starting compensation) function
- Shock time (output delay) function
- Compact design, includes CT
- Works with inverter driving
- Choose between self-holding output relay and automatic resetting
- Includes test function
- Detection of locked rotor start

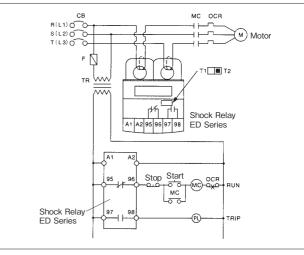


ED Series



Meter Relay (analog type)

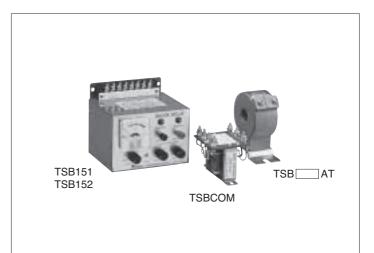
Operation Mode



Dimensional outline drawing

220…2.2kW 550…5.5kW

Basic diagram



Model No. TSB020ED-1 SHOCK RELAY Maximum applicable motor capacity (200V class) 020...0.2kW 075...0.75kW

Shock Relay 150 Series

Features

- 1. Analog meter
- 2. Self-holding type
- 3. Special MTO models and additional specifications are available

Standard Specifications

Fu	inction	Model	TSB151-COM	TSB152, TSB AT*2	
		200V class	0.2~3.7kW ^{*1}	5.5~90kW	
	Motor	400V class	0.2~3.7kW	5.5~90kW	
no		Ambient temperature	-10°C~50°C		
Common		Relative humidity	45~85% RH; there	is no condensation	
Ŭ	Work environment	Vibration	Less than	5.9m/s ²	
		Height	Less than	1000m	
		Ambient atmosphere	No corrosiv	re gas, dust	
		unit model	TSB151	TSB152	
	Load current	(current range) ^{%4}	30~130%(100%=5mA)	30~130% (100%=5A)	
	Current ac	curacy setting	±10% (f	ull-scale)	
	Time setting range		0.2~		
		Shock time ^{*4}	0.2-	~3s	
	Control powe	er supply voltage	AC100/110V or AC200/220V 50/60Hz $\pm 10\%$		
	Max. moto	r circuit voltage	AC600V, 50/60Hz		
	Current detecting system		1 phase CT system		
		Self-holding	Self-holding		
Jnit		Normal state	Output relay c		
Main Unit	Output relay	Abnormal case	Output relay	-	
Ž		Contact rating	1c contact, AC250V 0.2A (inductive load $\cos\phi$ =0.4)		
		Minimum applicable load ^{*3}	DC24V, 4mA		
	Output relay life-span	Mechanical	10,000,000 times		
		Electric	100,00		
	Test	function	Included		
		Gap between circuit and housing	AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit)		
	Withstand voltage	Contact gap	AC700V, 60Hz, 1 minute		
		Circuit gap	AC1500V, 60Hz, 1 minute (power		
		Mass	1.0kg	1.2kg	
		med power	1.2		
	External acc	essory CT model	TSB COM	TSB AT (Rated input current value)	
С	Rated in	nput current	0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A, 4.0A,	100A, 120A, 150A,	
			5.3A, 7.0A, 9.0A, 10.0A, 16.0A	200A, 250A, 300A	
External		utput current	5mA	5A	
		ed load	0.5VA	5VA	
		Mass	0.5kg	0.6kg	

Notes: %1. If the TSBCOM-A (small capacity type CT) is used, it is possible to use a less than 0.1kW motor. %2. TSB152 and TSB _____ AT (CT) have different model numbers.

%3. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.
 As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.
 %4. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

Part Names and Functions

% Display Meter

The meter displays the percentage of the motor rated current vs. the motor current in operation. (The rated current here is based upon the Motor Rated Current CT selection table on page 100.)

LOAD CURRENT volume

Can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

% Adjust Volume

If the input from CT is 5mA (TSB151) or 5A (TSB152), the meter can be modified in the 95 \sim 130% range. Also, after adjusting the % adjuster, the meter scale indicator and load current set scale are the same.

START TIME volume

When the motor starts there is a possibility that the motor current will exceed the set current value.

To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

Terminal

The terminal is located on the upper portion of the Shock Relay, making wiring easy.

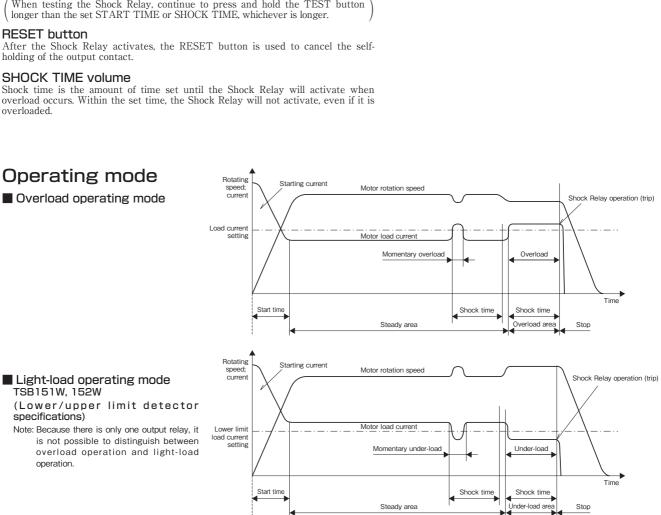
POWER indicator

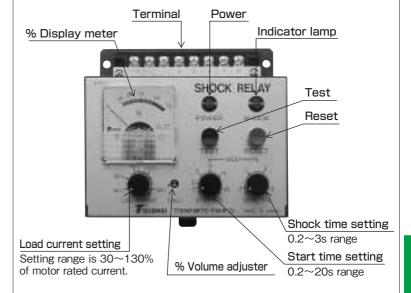
The POWER indicator lights when Shock Relay is turned on.

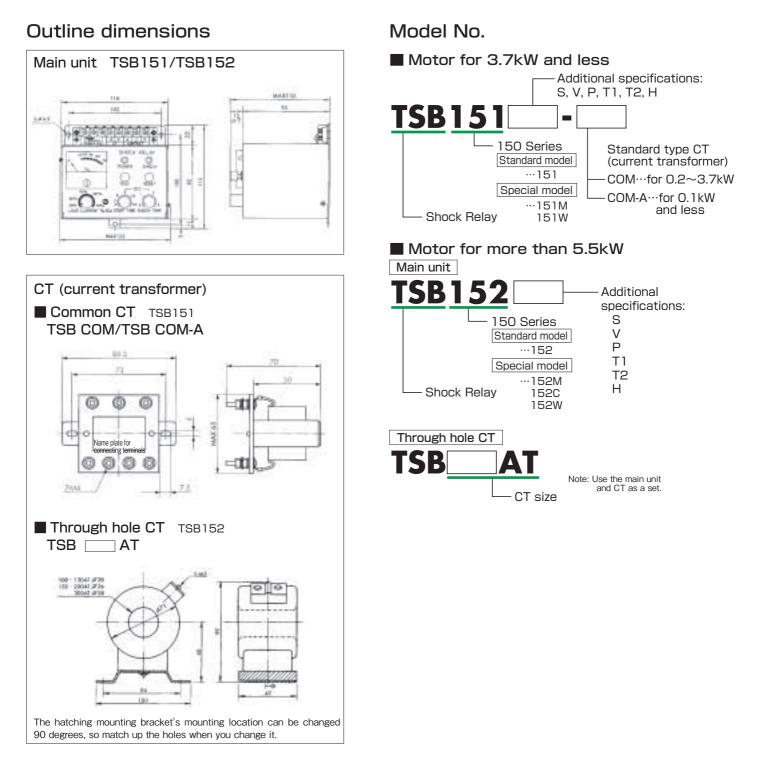
Activation (SHOCK) indicator

The activation (SHOCK) indicator lights when the Shock Relay operates.

TEST button


Shock Relay operation can be tested stand-alone or during motor operation.


(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.


RESET button

After the Shock Relay activates, the RESET button is used to cancel the selfholding of the output contact.

overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

Standard model and special model additional specifications chart

	ditional specifications	Subtropical spec.	Control power supply voltage modification	Panel mounting	Start time modification	Shock time modification	Auto-reset
Model		S	V	Р	T1	T2	Н
Standard	151/152	O	0	O	0	O	O
Impact load detection	151M/152M	O	0	0	0	0	0
1A input (motor capacity is not necessary to consider)	152C	O	O	O	0	0	0
Upper/lower	151W	\bigcirc	O	O	O	0	0
limit detection	152W	O	O	O	O	0	0

Notes: 1. Refer to page 82 for detailed specifications

2. For additional specifications V, specify operation power source

3. For additional specifications T1 and T2, indicate the start time and shock time modification time.

O : Multiple specifications

available

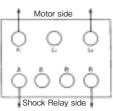
• : Single specification available

×: Not available

CT (current transformer)

Common CT: for motors up to and including 3.7kw

- \cdot TSB COM (standard type) can be used with 0.2 \sim 3.7kW motors.
- \cdot TSB COM-A (small capacity type) can be used with motors up to and including 0.1kW.


TSB COM (standard type)

			. ,			
	Power su	pply: AC20	0/ 220V	Power su	pply: AC40	0/ 440V
Motors (kW)	Motor rated	Connectin	g terminal	Motor rated	Connectin	g terminal
(KVV)	current (A)	Motor side	Shock Relay side	current (A)	Motor side	Shock Relay side
0.2	1.75	K-L ₂	k-b	0.75	K-L ₂	l-b
0.4	2.5	K-L ₂	k-b	1.5	K-L ₂	b-b
0.75	4.0	K-L ₂	k-b	2.0	L1-L2	b-b
1.5	7.0	K-L	k-b	3.3	L1-L2	k-b
2.2	10.0	K-L	k-b	5.3	L1-L2	k-b
37	16.0	K-L	k-la	9.0	K-L	0,_0,

Note: Common type CT, motor side L1-L2; Shock Relay side *l*1-l2 combination, 1A output CT can be combined.

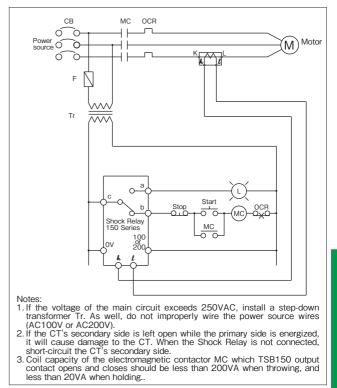
TSB COM-A (small capacity type)

Motor rated	Connecting terminal				
current (A)	Motor side	Shock Relay side			
0.15	K-L ₂	k-b			
0.25	K-L ₂	k-b			
0.4	K-L ₂	k-b			
0.6	K-L	k-b			
1.0	K-Lı	k-b			
1.6	K-L	k-b			

Note: Select by current value

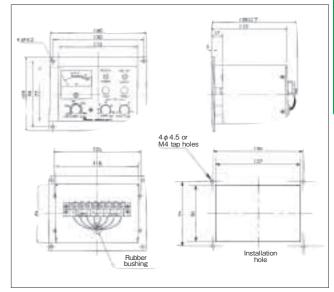
Through-type CT for motors 5.5kW and above

· Select a CT size applicable to motor capacity.


	Power su	pply: AC20	0/ 220V	Power su	pply: AC40	0/440V
Motor (kW)	Motor rated current (A)	CT size	Number of wires that pass through the CT hole (T)	Motor rated current (A)	CT size	Number of wires that pass through the CT hole (T)
5.5	25	100AT	4	14	100AT	7
7.5	30	120AT	4	20	100AT	5
11	50	100AT	2	25	100AT	4
15	60	120AT	2	30	120AT	4
19	75	150AT	2	37	150AT	4
22	100	100AT	1	50	100AT	2
30	120	120AT	1	60	120AT	2
37	150	150AT	1	75	150AT	2
45	170	200AT	1	85	100AT	1
55	200	200AT	1	100	100AT	1
75	250	250AT	1	130	150AT	1
90	300	300AT	1	150	150AT	1

In the case the single-phase motor or motor capacity is not on the selection chart, use the following calculation to make your selection:

CT size \geq motor rated current x number of wire(s) passing through the CT hole



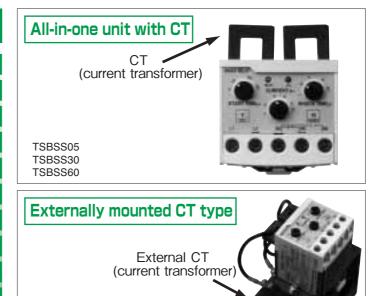
Basic connection diagram

Special models and additional specifications

TSB151P, TSB152P (panel mounted type) outline dimensions

Notes on CT (current transformer) selection

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.


When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows an 80 \sim 100% range when rated current flows.

150 Series

Shock Relay SS Series

Features

Output relay self-holding type
Output relay return type when detecting over-current (fail-safe)
Economically priced
Broad current setting range
High repeating accuracy
Includes TEST/ RESET buttons
All-in-one unit with CT (current transformer)
Special model for the conformance to UL/cUL standards
CE marking
DIN rail (35mm) mountable
Can be used with a single-phase motor

TSBSS100 (TSBSS05+TSB2CT100) TSBSS200 (TSBSS05+TSB2CT200) TSBSS300 (TSBSS05+TSB2CT300)

Standard Specifications

lter	Items Model No.		TSBSS05	TSBSS30	TSBSS60	TSBSS100	TSBSS200	TSBSS300	
ner	Load current (current setting range)*3		0.5~5A	3~30A	5~60A	10~100A	20~200A	30~300A	
Common	Applicable motor capacity	200V class	0.1~0.75kW	1.5~5.5kW	7.5~11kW	15~18.5kW	22~37kW	45~75kW	
		400V class	0.2~2.2kW	3.7~11kW	15~22kW	30~45kW	55~90kW	110~132kW	
		Ambient temperature	-20°C~60°C						
	Work environment	Ambient humidity	45~85%RH; no condensation						
		Vibration	Less than 5.9m/s ²						
Ö		Altitude	Less than 2000m						
		Ambient atmosphere	No corrosive gas, dust						
	Unit model No.		TSBSS05	TSBSS30	TSBSS60	TSBSS05	TSBSS05	TSBSS05	
	Current setting accuracy		±10% (full scale)						
	Set time	Start time ^{*3}	*40.2~30s						
	range	Shock time ^{*3}	^{**5} 0.2~10s						
	Control power supply voltage (L1 - L2)		AC100~240V, 50/60Hz						
	Maximum motor circuit voltage		AC600V, 50/60Hz						
	Current detection system		Two-phase CT system						
		Self-holding	Includes self-holding						
	Output relay *1	Normal state	At start up there is a 0.5s delay, then the output relay excites						
		Abnormal case	When it trips or the power is shut off, the output relay is not excited						
		Contact capacity	1 c contact, AC240V 3A (in the case of a resistance load)						
÷ŧ		Minimum applicable load ^{*2}	DC10V, 10mA						
Main unit		Reset method	Press the RESET button or cut the operation power						
Λaiı	Output relay	Mechanical	10,000,000 times						
2	life-span '	Electrical	100,000 times						
	Test functions		Internal circuit and output relay operation check						
	Withstand voltage	Between the circuit and case	AC2000V, 60Hz, 1 minute (power supply circuit and contact circuit)						
		Between contacts	AC1000V, 60Hz, 1 minute						
	Between circuit		AC2000V, 60Hz, 1 minute (power supply circuit and contact circuit)						
	Gross mass		0.2kg (not including external CT)						
	Power	When AC110V	2.7VA (0.35W)						
	consumption	When AC200V	11.0VA						
	DIN rail mounting			<u> </u>		×			
	UL·cUL CE			*6×		×			
	CE External CT Model No.			0		TODOCTION	X	TODOCTOOC	
External CT				Not needed		TSB2CT100	TSB2CT200	TSB2CT300	
	Rated primary current		— <u>100A</u> 200A 300A						
	Rated secondary current Rated load			— <u>5A</u>					
				5VA					
	Mass		— 0.5kg						

Notes: #1. During normal operation the output relay is ON, and when the Shock Relay operates it is OFF (refer to page 82). #2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC. *3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

%4. Although the minimum value on the display is 5s, values smaller than 5s can be set with the dial.
%5. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.

%6. Special model is available for the conformance to cUL standards.

Part Names and Functions

LOAD CURRENT volume (A)

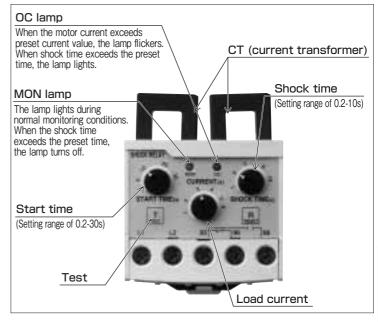
Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

START TIME volume (s)

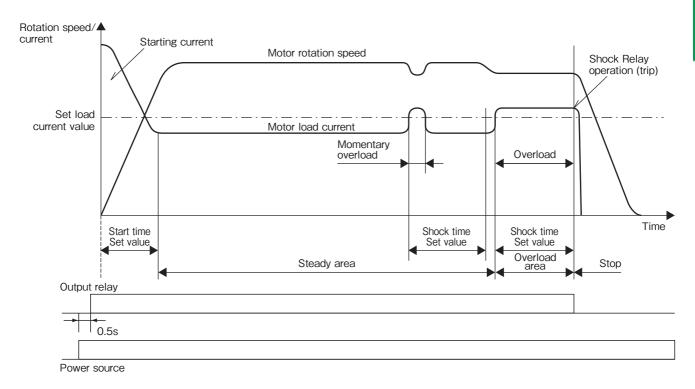
When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

TEST button

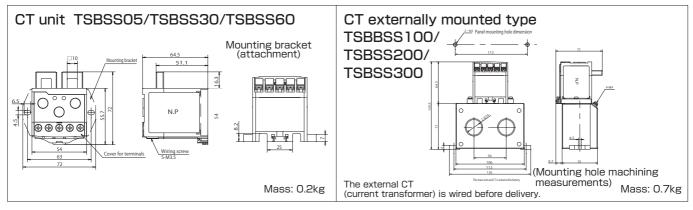
Shock Relay operation can be tested stand-alone or during motor operation.

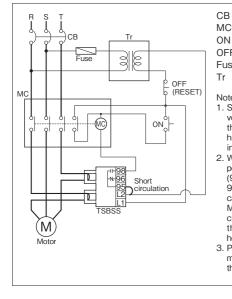

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

RESET button


After the Shock Relay activates, the RESET button is used to cancel the self-holding of the output contact.

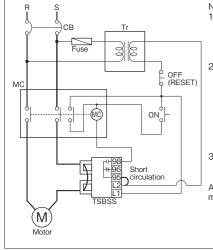
SHOCK TIME volume (s)


Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.


Operational Mode

Outline dimensions

Basic connection diagram



- Circuit breaker
- MC : Magnetic contactor ON : Start switch
- OFF : Stop switch
- Euse : Euse
- ruse : Fuse Tr : Transformer

Notes:

- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a high-harmonic noise generator such as an inverter.
- 2. When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 is "open"), and when tripping, 95-98 are "open" (95-96 is "closed"). Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- Pass two wires out of three phases of the motor through the Shock Relay's CT in the same direction.

Single-phase motor reference schematic for when using the motor

Notes:

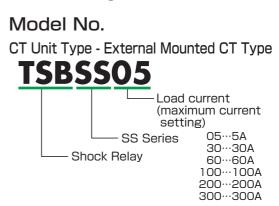
- Set the transformer depending on the voltage of the Shock Relay and MC. Set the insulation transformer if there is a highharmonic noise generator such as an inverter.
 When it's running permally, the contact
- Inverter.

 When it's running normally, the contact points 95-98 of the TSBSS are "closed" (95-96 are "open"), and when tripping, 95-98 are "open" (95-96 are "closed").
 Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.
- 3. Pass one phase through the Shock Relay's CT in the same direction.

As for the split-phase start and capacitor run motor, connect CT to the main coil side.

Notes on usage

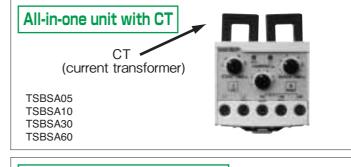
- 1. During normal operation, the output relay is excited (ON). When overload is detected and the Shock Relay activates or the power supply is cut, the output relay is de-excited (OFF).
- 2. Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. In order to increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.


When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

AC	200V class m	otor	AC400V class motor			
Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	
0.1	TSBSS05	4	—	_	—	
0.2	TSBSS05	3	0.2	TSBSS05	4	
0.4	TSBSS05	2	0.4	TSBSS05	3	
0.75	TSBSS05	1	0.75	TSBSS05	2	
1.5	TSBSS30	3	1.5	TSBSS05	1	
2.2	TSBSS30	2	2.2	TSBSS05	1	
3.7	TSBSS30	1	3.7	TSBSS30	3	
5.5	TSBSS30	1	5.5	TSBSS30	2	
7.5	TSBSS60	1	7.5	TSBSS30	1	
11	TSBSS60	1	11	TSBSS30	1	
_	_	_	15	TSBSS60	1	
_	—	—	18.5	TSBSS60	1	
		—	22	TSBSS60	1	


 Because products conforming to CE markings have been electro-magnetically tested for compatibility based on industrial environmental standards, they are not for household, commercial or light industrial use.

Shock Relay SA Series

Features

- Output relay automatic return type
- Output relay activating type when detecting over-current
- **Economically priced**
- Accurate current setting
- **High repeatability**
- **Test function**
- All-in-one unit with CT (current transformer)
- Can be mounted on a DIN rail (35mm)
- Can be used with a single-phase motor

Externally mounted CT type

TSBSA100 (TSBSA05+TSB2CT100) TSBSA200 (TSBSA05+TSB2CT200) TSBSA300 (TSBSA05+TSB2CT300)

Standard specifications

Fur	Function Model		TSBSA05	TSBSA10	TSBSA30	TSBSA60	TSBSA100	TSBSA200	TSBSA300
Common	Load current (current setting range) ^{*3}		0.5~5A	1~10A	3~30A	5~60A	10~100A	20~200A	30~300A
	Motor	200V class	0.1~0.75kW	1.5~2.2kW	3.7~5.5kW	7.5~11kW	15~18.5kW	22~37kW	45~75kW
	capacity	400V class	0.2~2.2kW	3.7kW	5.5~11kW	15~22kW	30~45kW	55~90kW	110~132kW
	Work environment	Ambient temperature	-20°C~60°C						
		Ambient humidity	45~85%RH: no condensation						
		Vibration	Less than 5.9m/s ²						
		Altitude	Less than 2000m						
		Atmosphere		No corrosive gas or dust					
	Unit model		TSBSA05	TSBSA10	TSBSA30	TSBSA60	TSBSA05	TSBSA05	TSBSA05
	Current setting accuracy		±10% (full-scale)						
	Time setting Start time ^{*3}		^{**4} 0.2~10s						
	range	Shock time ^{**3}	**50.2~5s						
	Operation power source (A1-A2)		AC100~240V, 50/60Hz						
	Maximum motor circuit voltage		AC600V, 50/60Hz						
	Current detection system		2 phase CT system						
		Self-holding	No self-holding (automatically returns after 1s)						
Main Unit		Normal state	Output relay is not excited						
		Abnormal case	Output relay is excited						
		Contact capacity	0.2A AC250V $\cos \phi = 0.4$						
		Minimum applicable load ^{*2}	DC10V, 10mA						
	Output relay life span	Mechanical	10,000,000 times						
	· · · · · · · · · · · · · · · · · · ·	Electrical	100,000 times						
	Test functions		Internal circuit and output relay operation verification						
	Withstand	Between the circuit and case	AC2000V, 60Hz, 1 minute (power supply circuit and contact circuit)						
	voltage	Between contacts	AC 1000V, 60Hz, 1 minute						
	Between circuits		AC2000V, 60Hz, 1 minute (power supply circuit and contact circuit)						
	Mass		0.2kg (excluding external CT)						
	Power	When AC110V	2.7VA (0.35W)						
	consumption When AC200V		11.0VA (1.2W)						
	DIN rail mounting		0 ×						
External CT	External CT Model No.			Not neede	d			SB2CT200	TSB2CT300
	Rated primary current			_		1	00A	200A	300A
	Rated secondary current		5A						
	Rated load		5VA						
		Mass	- 0.5kg						

Notes: %1. The operation of the TSBSA Series is the complete opposite of the TSBSS Series.

*2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.
 As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC.

#3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

%4. Although the minimum value on the display is 1s, values smaller than 1s can be set with the dial.

Part Names and Functions

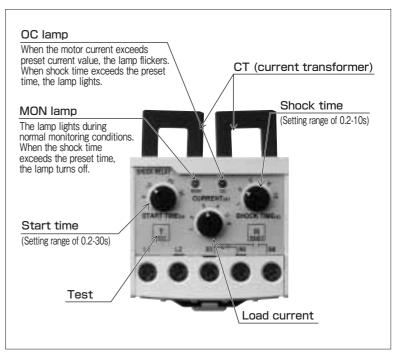
LOAD CURRENT setting

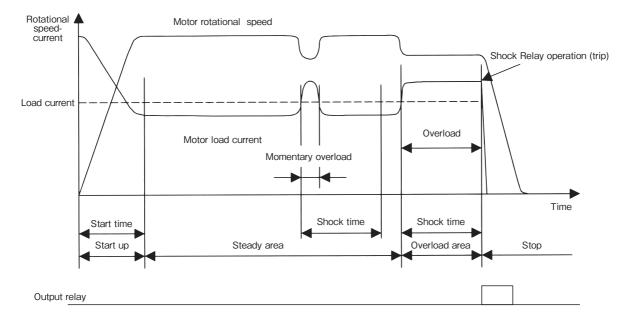
Load current can be set to stop the motor at the desired level when overload occurs. When the motor current exceeds the preset CURRENT value (at the same time, overload time continues to exceed the preset SHOCK TIME), the Shock Relay activates and stops the motor.

START TIME setting

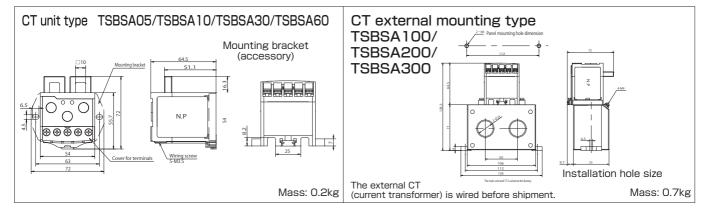
When the motor starts there is a possibility that the motor current will exceed the set current value. To prevent the Shock Relay from tripping due to the spike in start current, start time is set a little bit longer than the period of motor start up to ignore the spike.

TEST function


Shock Relay operation can be tested stand-alone or during motor operation.

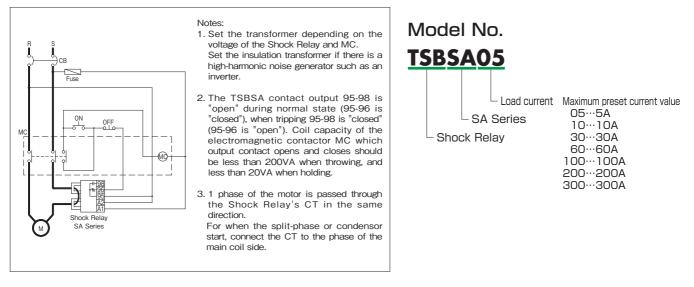

(When testing the Shock Relay, continue to press and hold the TEST button longer than the set START TIME or SHOCK TIME, whichever is longer.)

SHOCK TIME setting


Shock time is the amount of time set until the Shock Relay will activate when overload occurs. Within the set time, the Shock Relay will not activate, even if it is overloaded.

Operational Mode

Outline dimensions



Basic connection diagram

Single-phase reference connection diagram

Number of wire(s) that pass through the CT hole

Depending on motor capacity, use the chart on the right to select the applicable Shock Relay model and number of wire(s) to pass through the CT hole.

In order that increase the current setting accuracy, the number of wires that pass through the CT hole is 2 times or more for small motor currents.

When the motor load factor is low, increase the number of wires that pass through the CT hole as necessary.

Furthermore, when the number of the wires that pass through the CT hole is more than 2, it is necessary to convert the current scale value of current volume.

(Ex.) When a wire passes two times through the CT, the value on the current scale should be at half value.

A	C200V class mot	or	A	C400V class mot	or
Capacity (kW)	Shock Relay Model No.	No. of wires that pass through the CT hole	Shock Relay Model No.	No. of wires that pass through the CT hole	
0.1	TSBSA05	4	—	—	_
0.2	TSBSA05	3	0.2	TSBSA05	4
0.4	TSBSA05	2	0.4	TSBSA05	3
0.75	0.75 TSBSA05 1 0.75 TSBSA05				
1.5	TSBSA10	1	1.5	TSBSA05	1
2.2	TSBSA10	1	2.2	TSBSA05	1
3.7	TSBSA30	1	3.7	TSBSA10	1
5.5	TSBSA30	1	5.5	TSBSA30	1
7.5	TSBSA60	1	7.5	TSBSA30	1
11	TSBSA60	1	11	TSBSA30	1
_		_	15	TSBSA60	1
_		_	18.5	TSBSA60	1
	_	_	22	TSBSA60	1

Shock Relay SU Series

Feature

Under-load Detection Type

Once the motor current falls below the preset level, it can detect an under-load and send a signal to stop the motor.

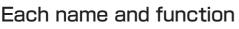
Compact all-in-one CT (Current Transformer)

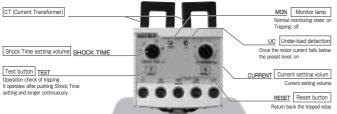
Includes Test and Reset buttons

DIN rail (35mm) is available

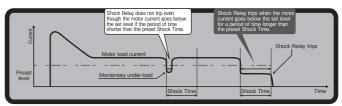
Can also be used with a single phase motor

CT all-in-one model CT (Current Transformer)

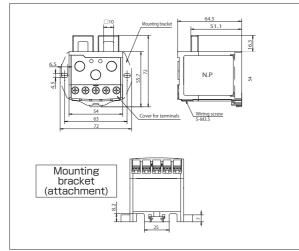

Standard specifications


	Model No.	TSBSU05-2	TSBSU30-2	TSBSU60-2						
(Current setting range *1,*2	0.5~5A	3~30A	5~60A						
Ş	Shock Time setting range *1		0.2~30s							
	Current setting accuracy	±10% (full scale)								
Contro	ol power supply voltage (A1 – A2)		AC 100~240V±10% 50/60Hz							
Ν	laximum motor circuit voltage		AC 600V 50/60Hz **3							
	Current detection system	2 phase CT system								
Display	MON lamp		nal monitoring state: MON lamp (green)							
Dispidy	UC lamp	Det	ection of under current: UC lamp (red) is	on						
	Contact arrangement		lc							
	Contact rating		3A AC250V $\cos\phi=1$							
	Recommended amperes (in case of frequent operation)		0.2A and below AC250V $\cos\phi=0.4$							
Output relay	Minimum application load **4		DC10V, 10mA							
	Operation	Relay is excited when tripping								
	Self-holding	Yes (refer to the diagram shown in the next page)								
	Life	100,000 times at contact rating load								
	Reset method	RESET button: ON or Power source: off								
	Ambient temperature	-20~60°C								
	Storage temperature		−30~70°C							
Work environment	Humidity		45~85%RH; no condensation							
	Altitude		2000m and below							
	Atmosphere	No corrosive gas	nor dust; Pollution degree 3 and below;	in the control box						
	Vibration		5.9m/s² and below							
Insulation resistance	Between case and circuit		10M Ω and above (DC500V megger)							
Withstand	Between case and circuit		AC2000V 60Hz 1 min.							
voltage	Between contacts		AC1000V 60Hz 1 min.							
volidge	Between circuits		AC2000V 60Hz 1 min.							
Materials	Case		Polycarbonate, UL94V0							
maianaia	Cover for terminals		Nylon 6							
	Power consumption		2VA and below							
	Mounting		35mm DIN rail or attached bracket							
Dimensions	Main unit (including CT)	Length 62 x width 54 x height 66mm								
Mass	Main unit (including CT)		0.2kg							

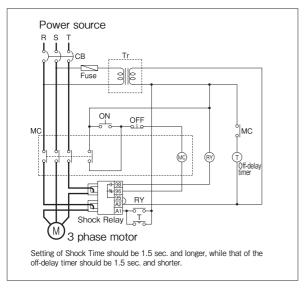
*1. Current and Shock Time setting ranges are those which can be set, but do not show the upper or lower limits of the setting volume.

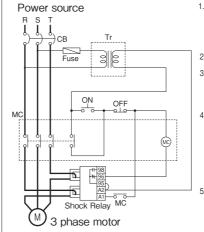

*2.In the case that the current, at normal state, exceeds the setting range, each model can allow up to 100A respectively.

*3.In the case of an inverter drive, there is a possibility of malfunction due to the distortion of the current waveform. If the frequency is within the range of 30 to 60Hz, it can be used because the influence is minor. *4.Be sure to input minute electric currents through the relay when inputting an output relay contact directly into the PLC (Programmable logic controller), because there is a risk of contact failure due to minute electric current.

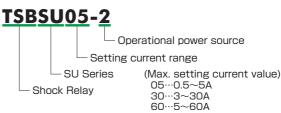


Operation mode




Outline dimensions

Self-holding diagram for reference


Basic diagram

 If necessary, set transformer (Tr) depending on the voltage on the Shock Relay and electromagnetic contactor (MC). Install an isolating transformer if there is any harmonic noise generating device, auch as an instant. device, such as an inverter.

- Output relay; Normal condition: not excited, Trip condition: excited
 Turn on or off the power source of the
- Tum on or of the power source of the Shock Relay simultaneously as the motor starts/stops. In case the Shock Time setting is 1.5 sec. or shorter, the output relay may activate when the motor stops.
 Coil capacity of MC connected with
- output relay of Shock Relay is; Throw: less than 200VA, Hold: less than 20VA
- As a guide, in case of TSBSU60, set auxiliary relay, and activate auxiliary relay with output relay of the Shock Relay, and open/close MC with the contactor of the auxiliary relay.
- 5. This basic diagram is not for self-holding. If a self-holding circuit is necessary, refer to the special diagram for self-holding.

Model No.

Number of wire(s) that pass through the CT (Current Transformer) hole

Pass the motor wire(s) through the CT hole the number of times referenced in the chart below. These numbers are rough indication of when the motor load factor is 80 to 100%. In case the motor load factor is low, increase the number of wires that pass through the CT hole as necessary to improve the setting accuracy. In case the motor is not listed below (small capacity, single phase, different voltage, etc.), select the model and number of wire(s) passing through the CT hole depending on the setting current.

	AC 200V class 3 phase motor		AC 400V class 3 phase motor					
Capacity (kW)	Applicable Shock Relay Model No.	Applicable Number of wires that pass Capacity Shock Relay Model No. through the CT hole (kW)		Applicable Shock Relay Model No.	Number of wires that pass through the CT hole			
0.1	TSBSU05-2	4	_		_			
0.2	TSBSU05-2	3	0.2	TSBSU05-2	4			
0.4	TSBSU05-2	2	0.4	TSBSU05-2	3			
0.75	TSBSU05-2	1	0.75	TSBSU05-2	2			
1.5	TSBSU30-2	3	TSBSU05-2	1				
2.2	TSBSU30-2	2	2.2	TSBSU05-2	1			
3.7	TSBSU30-2	1	3.7	TSBSU30-2	3			
5.5	TSBSU30-2	1	5.5	TSBSU30-2	2			
7.5	TSBSU60-2	1	7.5	TSBSU30-2	1			
11	TSBSU60-2	1	11	TSBSU30-2	1			
_	_	_	15	TSBSU60-2	1			
_	_	—	18.5	TSBSU60-2	1			
_	_	—	22	TSBSU60-2	1			

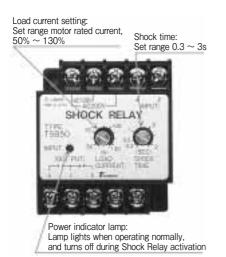
Note 1) In case the number of the wires that pass through the CT hole is more than 2 times, it is necessary to convert the current scale value of CURRENT volume. (Ex.) When a wire passes two times through the CT, the value on the CURRENT scale should be at half value. 2) In case the motor capacity exceeds the above motor capacity, use the external CT.

Shock Relay 50 Series

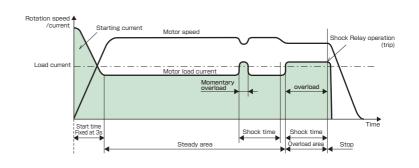
Features

- 1. Economically priced
- 2. Automatic reset
- 3. Additional specifications available

Standard specifications

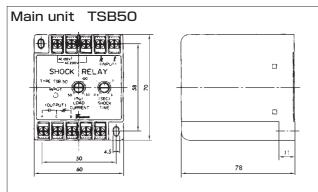

current transformes

Fu	unction	Model	TSB50-COM					
		200V class	0.2~3.7kW*1					
	Motor	400V class	0.2~3.7kW					
Б		Ambient temperature	-10°C~50°C					
Common		Ambient humidity	45~85%RH: no condensation					
ð	Work environment	Vibration	Less than 5.9m/s ²					
0		Altitude	Less than 1000m					
		Atmosphere	No corrosive gas, dust					
	Unit A	Nodel No.	TSB50					
	Load current (cur	rrent setting range)*3	50~130% (100%=5mA)					
	Current se	tting accuracy	±10% (full-scale)					
	T	Start time	Fixed at 3s					
	Time setting range	Shock time	0.3~3s					
	Control powe	er supply voltage	AC100/110V or AC200/220V 50/60Hz ±10%					
		otor circuit voltage	AC600V, 50/60Hz					
	Current de	etecting system	Single-phase CT system					
.±		Self-holding	No self-holding (automatic return)					
Main Unit		Normal operation	Output relay is not excited					
.Ц	Output relay	Abnormal case	Output relay is excited					
×		Contact capacity	1s contact, AC250V 0.1A (inductive load cos <i>p</i> =0.4)					
		Minimum applicable load*2	DC10V, 10mA					
	Output relay life span	Mechanical	10,000,000 times					
	, , ,	Electrical	100,000 times					
	Test	functions	Not available					
		Space between circuit and housing	AC1500V, 60Hz, 1minute (power supply circuit and contact circuit)					
	Withstand voltage	Contact spacing	AC500V, 60Hz, 1minute					
		Circuit spacing	AC1500V, 60Hz, 1 minute (power supply circuit and contact circuit)					
		Mass	0.3kg (not including external CT)					
		consumption	0.5VA					
_	Attachec	External CT	TSB COM					
Б	Rated pri	mary current	0.75A, 1.5A, 1.75A, 2.0A, 2.5A, 3.3A,					
na			4.0A, 5.3A, 7.0A, 9.0A, 10.0A, 16.0A					
External		ondary current	5mA					
ш		ed load	0.5VA					
	Ma	ass	0.5kg					
Note	es:							

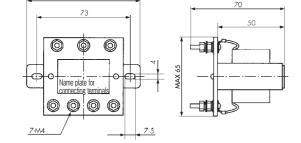

1. If TSBCOM-A (small capacity type CT) is used, it can be used for less than 0.1kW motors. 2. When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.

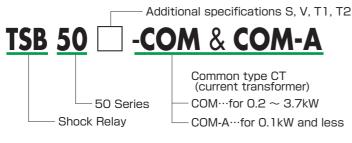
As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC. 3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

Each Part and Function



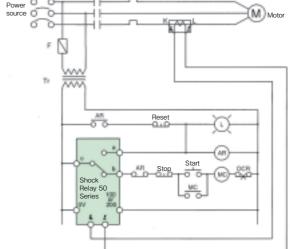
Operational Mode




Outline dimensions

Common type CT (current transformer) TSB COM/TSB COM-A

Model No.



Note) Use main unit with CT as a set.

CT (current transformer) Selection Notes

The load current meter of the Shock Relay shows 100% at the time of the motor rated current value in the chart.

When the actual motor rated current value is not on the chart, use a CT on which the load current meter shows 80% to 100% range when rated current flows.

Basic connection diagram

MO

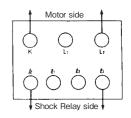
OCR

Notes

CB

- 1. When the main circuit's voltage exceeds 220VAC, install a step down transformer. As well, take care not to make a mistake with the power source (AC100V or AC200V) wiring.
- 2. If the CT's secondary side is left open while the primary side is energized, it will cause damage to the CT.
- When the Shock Relay is not connected, short-circuit the CT's secondary side. 3. Coil capacity of the electromagnetic contactor MC which output contact opens and closes should be less than 200VA when throwing, and less than 20VA when holding.

Common CT (current transformer)


- TSB COM (standard type) can be used with a 0.2 to 3.7kW motor.
- · TSB COM-A (small capacity type) can be used with a 0.1kW and smaller motor.

TSB COM (standard type)

Motor vo	ltage AC20	0/220V	Motor voltage AC400/440V					
			Motor rated					
current (A)	Motor side	Shock Relay side	current (A)	Motor side	Shock Relay side			
1.75	K-L ₂	k-l,	0.75	K-L ₂	$\ell_1 - \ell_2$			
2.5	K-L ₂	$k - \ell_2$	1.5	K-L ₂	$\ell_2 - \ell_3$			
4.0	K-L ₂	$k - \ell_3$	2.0	L ₁ -L ₂	$\ell_2 - \ell_3$			
7.0	K-L	$k - \ell_1$	3.3	L ₁ -L ₂	$k - \ell_2$			
10.0	K-L,	$k - \ell_2$	5.3	L ₁ -L ₂	$k - \ell_3$			
16.0	K-L	$k - \ell_3$	9.0	K-L	$\ell_1 - \ell_3$			
	Motor rated current (A) 1.75 2.5 4.0 7.0 10.0	Motor rated Connectin current (A) Motor side 1.75 K-L2 2.5 K-L2 4.0 K-L2 7.0 K-L1 10.0 K-L1	Current (A) Motor side Shock Relay side 1.75 K-L2 k-l1 2.5 K-L2 k-l2 4.0 K-L2 k-l3 7.0 K-L1 k-l1 10.0 K-L1 k-l2	Motor rated current (A) Connecting terminal Motor side Motor rated current (A) 1.75 K-L ₂ k-ℓ ₁ 0.75 2.5 K-L ₂ k-ℓ ₂ 1.5 4.0 K-L ₂ k-ℓ ₃ 2.0 7.0 K-L ₁ k-ℓ ₁ 3.3 10.0 K-L ₁ k-ℓ ₂ 5.3	Motor rated current (A) Connecting terminal Motor side Motor rated current (A) Connectin Motor side Connectin Motor side 1.75 K-L ₂ k-l ₁ 0.75 K-L ₂ 2.5 K-L ₂ k-l ₂ 1.5 K-L ₂ 4.0 K-L ₂ k-l ₂ 2.0 L ₁ -L ₂ 7.0 K-L ₁ k-l ₁ 3.3 L ₁ -L ₂ 10.0 K-L ₁ k-l ₂ 5.3 L ₁ -L ₂			

Common type CT, motor side L_1 - L_2 : Shock Relay side ℓ_1 - ℓ_2 combination, 1A output CT can be combined	
TSB COM-A (small capacity type)	

Motor rated	Connectin	g terminal
current (A)	Motor side	Shock Relay side
0.15	K-L ₂	k-l_1
0.25	K-L ₂	$k - \ell_2$
0.4	K-L ₂	$k - \ell_3$
0.6	K-L	k-l,
1.0	K-L	$k - \ell_2$
1.6	K-L	k-l ₃
Noto:		

Shock Relay

II/50 Serie

Additional specifications chart

Additional specs.	Subtropical specifications	Control power supply voltage modification	Start time modification	Shock time modification
Model	S	V	TI	T2
TSB50	O	O	0	0

Notes:

1. Refer to page 82 for detailed specifications.

2. Specify operational power source voltage for the Shock Relay in the case of additional specification V.

3. Specify required start time and shock time in the case of additional specifications T1 and T2.

O: Multiple specifications available

Note: Select by current value

Shock Relay SM Series

Features

It protects the machines and equipment that are driven by small capacity motors from damage due to overload. The Shock Relay monitors the current of the driving motor, and when there is an abnormal amount of current, it outputs the relay signal and stops the motor.

Compact

Current setting range of 0.5 to 2A

Applicable motor capacities:

Three-phase 200V 60 \sim 200W

Single-phase 200V 60 \sim 200W $\,$ Single-phase 100V 25 \sim 90W $\,$

All-in-one unit with CT (current transformer)

Economically priced

Special specification models based on the standard model are available. Please consult TEM.

Special specifications example

No case type

Only a Shock Relay printed-circuit board.

•Motor capacity variation Responds with motor capacities other than the standard

•START TIME/ SHOCK TIME modification It can be modified from standard specifications

·Non-contact output type

When inputting the Shock Relay output into the programmable controller (sequencer), this is the optimum output.

Self-holding type

The standard automatic reset type can be changed to the self-holding type.

Includes reverse driving function type

If the motor is overloaded, it will automatically repeat forward/reverse drive. •Includes dual output signals type

Other than an output signal to stop the motor, an alarm signal is available.

Includes soft start function type

Includes a function to soften the shock that occurs when the motor starts.

Number of wire(s) that pass through the CT hole

Referring to the basic connection diagram and the chart below, pass the motor's power line through the CT (current transformer).

Rated motor current	No. of times wires that pass through the CT	Current reading convert indicator
More than 0.3A, less than 0.5A	3 times	3 times one third
More than 0.5A, less than 1.0A	2 times	2 times one half
More than 1.0, up to 2.0A	1 times	unnecessary
Notos:		

In the case the number of times the wire passes through the CT is 3 or 2 times, read the indicator scale one third or one half respectively.
 The CT through hole diameter is 6.5 mm. Use the wire which can pass the CT with

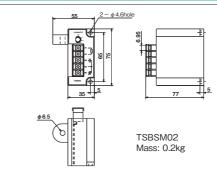
The CT through hole diameter is 6.5 mm. Use the wire which can pass the CT with necessary turns.

Notes on usage:

1. The output relay is excited (ON) when the Shock Relay detects overload and is operated.

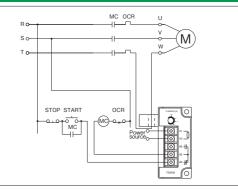
Standard specifcations

Function	Model	TSBSM02				
	Three phase 200V	60~200W				
Motor capacity	Single phase 200V	60~200W				
	Single phase 100V	25~90W				
Load a	current setting ^{*3}	0.5~2.0A				
	Start time	1.5s (fixed)				
	Shock time	1.0s (fixed)				
Current	t detection system	One phase conversion type				
		1 c contact 3A AC250V cos $\phi = 1$				
	Contact capacity	Minimum applicable load DC10V, 10mA **2				
Output relay	Operation	Automatic reset				
	Operation timing	Output when operating				
	Life span	100,000 times				
Control po	ower supply voltage	AC90~250V 50/60Hz				
Ambient o	perating temperature	−10~50°C				


Notes:

1. Motor capacity is just for reference. Select with the actual load current value.

When directly inputting output relay contact into the programmable controller (PLC), be aware that a minute electric current can cause contact failure.


As for the input to PLC, it is recommended to drive the relay coil for minute current by relay signal of Shock Relay at first, then input this relay contact to PLC. 3. Current and time setting ranges can be set within the warranty range, but not the upper or lower level of setting volume.

Outline dimensions for reference

The above dimensions are subject to change without notice, so please contact Tsubaki Emerson to confirm the dimensions before designing.

Basic connecting diagram

Control Devices

Torque Keeper

Features

The friction facings of the slipping clutch and brake are made with special fine chemical fibers.

Ministry of Economy, Trade and Industry picks for Good Design Award product

Long life

Special fine chemicals are used for friction facings, so much longer life can be expected when compared to other types of brake lining.

Slipping torque stability

Torque fluctuation is very small, so stable torque can be transmitted.

Constant torque repeatability

Even with high frequent repeated slippage, stable torque is transmitted consistently.

Lightweight

Due to the aluminum AF flange, the Torque Keeper is light in weight.

Compact

Its special design makes for significant space savings. The Torque Keeper is more compact than other braking devices.

<u>Wide torque range</u>

Each size has a wide torque range.

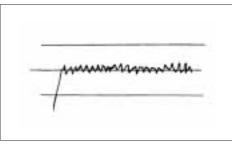
Easy torque setting

Torque indicators make torque setting easy.

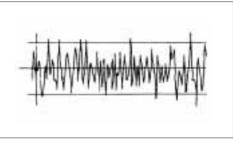
Ease of operation

Operation is easy due to the easy to use adjusting nut.

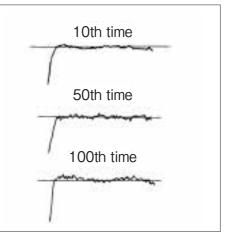
Greasing unnecessary


Grease and cooling are not needed.

Quick finished bore delivery


Finished bores can be made for guick delivery. (Refer to page 119 for details)

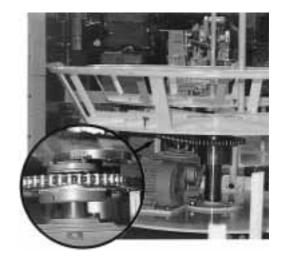
Torque Keeper

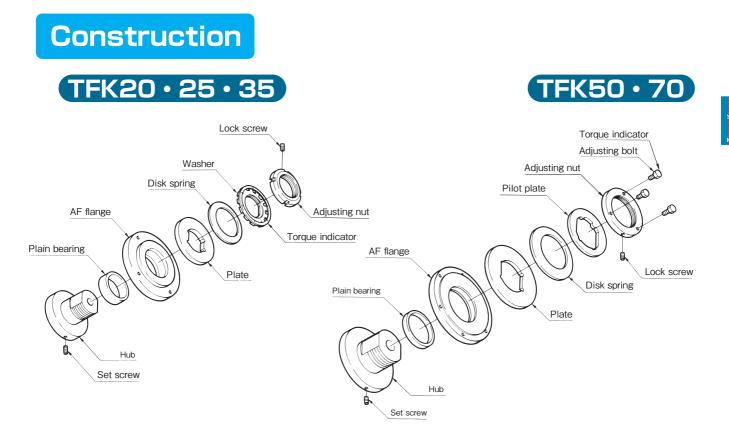


Standard brake

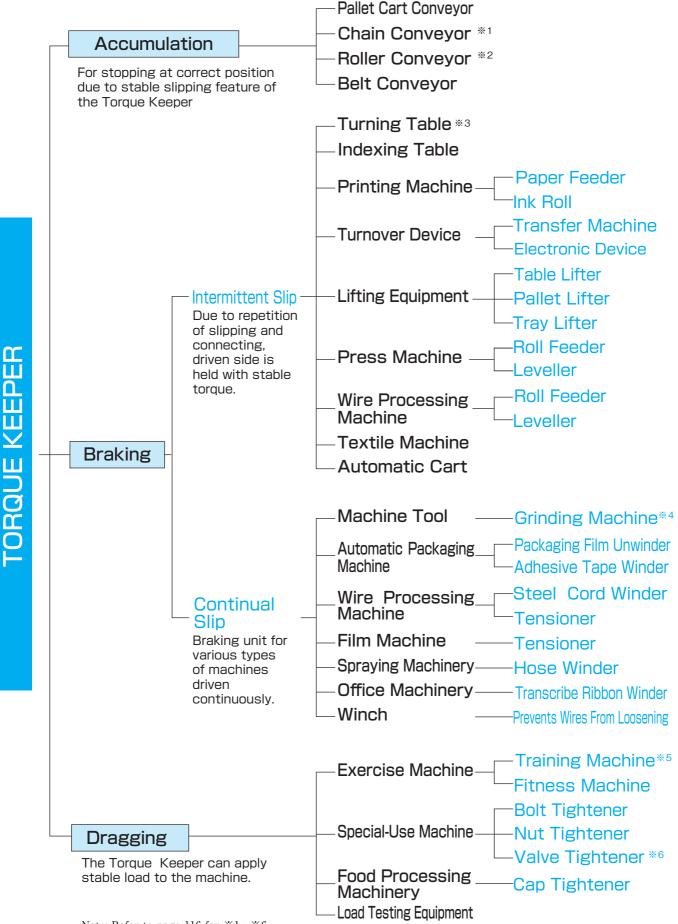
Compared to our ordinary products

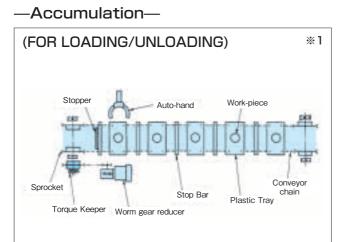
Intermittent slip


SAFCON


Long life/ Stable/ Easy to operate!

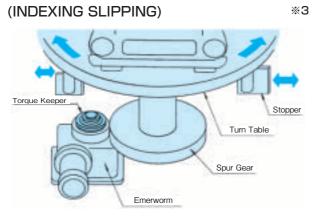
Our brakes have embarked on a new era of the fine chemical fiber. By using these fine chemical fibers, the Tsubaki Emerson Torque Keeper can achieve a longer product life than that of the conventional type of brake lining. This brand new type of Torque Keeper brake has been designed with an abrasion resistance, the use of a torque indicator, weight savings and other aspects that make it easy to use. For the driving of each conveyor's accumulation and brakes for automatic machineries as well as others, we recommend Tsubaki Emerson's Torque Keeper for all industrial equipment brake mechanisms.





Note: Refer to page 116 for $1 \sim 6$.

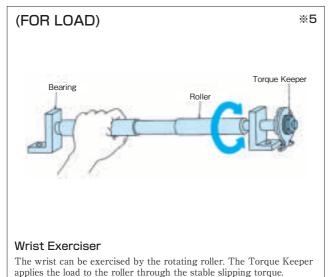
Applications

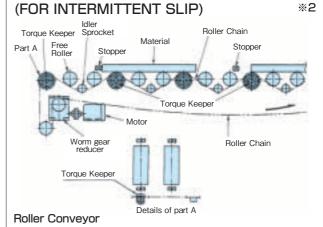


Chain Conveyor

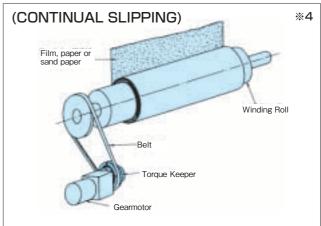
When the stop bar contacts the stopper, the Torque Keeper slips and the conveyor stops.

When the stopper is unset, the Torque Keeper connects and the conveyor resumes operation.

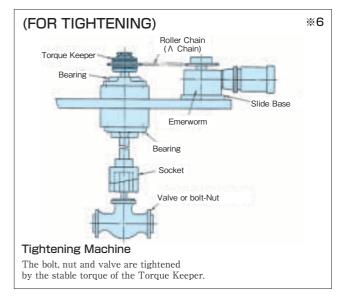

-Braking-



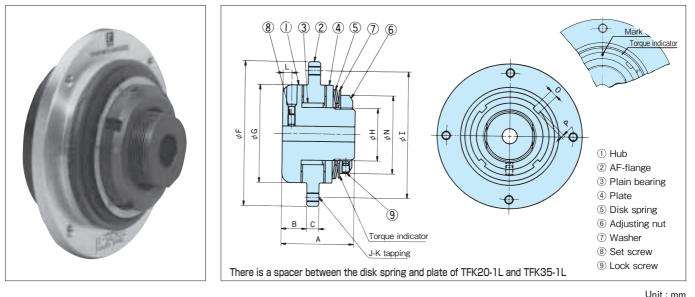
Turn Table for Parking System


At the parking station the car is rotated in the exit direction on the turn table. When the turn table comes to the correct position, it will be stopped by the stopper. The slipping of the Torque Keeper protects the drive unit from damage.

-Dragging-



When the roller chain is moving, if the material contacts the stopper, the nearby Torque Keeper slips and the material will be stopped. After releasing the stopper, the Torque Keeper will be connected and the material will continue moving.



Winding of Film, Paper or Sandpaper

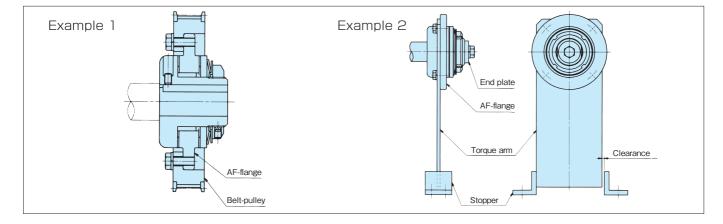
The gear motor winds the film, paper or sand paper through the Torque Keeper. In this case, the Torque Keeper is slipping under low rpm, so it can apply stable tension.

TFK20.25.35

		Rough	Max								Dimens	ions																															
Model No.	Setting torque range N∙m {kgf∙m}	bore dia.	bore dia.	А	В	С	F (h7)	G	Н	I PCD	J-K Nodia.	L	Ν	0	Р	Adjusting nut dia.×pitch	Set screw	Weight kg																									
TFK20-1L	$\begin{array}{c} 0.59 \sim 1.18 \\ [0.06 \sim 0.12]\end{array}$																																										
TFK20-1	1.76 ~ 5.88 {0.18 ~ 0.6}	7	14	37	13.3	7	84	50	24	70	4-M6	5	38	5	2	M24×1.0	M5 x 8	0.56																									
TFK20-2	$\begin{array}{c} 3.92 \sim 11.8 \\ 0.4 \sim 1.2 \end{array}$																																										
TFK25-1L	$\begin{array}{c} 1.76 \sim 4.12 \\ [0.18 \sim 0.42] \end{array}$																																										
TFK25-1	$\begin{array}{c} 3.92 \sim 16.7 \\ 0.4 \sim 1.7 \end{array}$	10	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	48	16.8	8	96	6 65	5 35	84	4-M6 6	6	6 52	5 2	2	M35×1.5	M5 x 8	0.76
TFK25-2	$7.84 \sim 32.3 \\ 0.8 \sim 3.3 $																																										
TFK35-1L	$5.88 \sim 11.8 \\ 0.6 \sim 1.2 $	17																																									
TFK35-1	$ \begin{array}{c} 11.8 \sim 44.1 \\ 11.2 \sim 4.5 \end{array} $		17	17	17	25	62	19.8	8	120	89	42	108	4-M6	7	65	6	2.5	M42×1.5	M6 x 12	1.5																						
TFK35-2	$\begin{array}{c c} 20.6 \sim 89.2 \\ 2.1 \sim 9.1 \end{array}$																																										

Note: 1. All rough bore types are in stock. 2. An M5 lock screw is included.

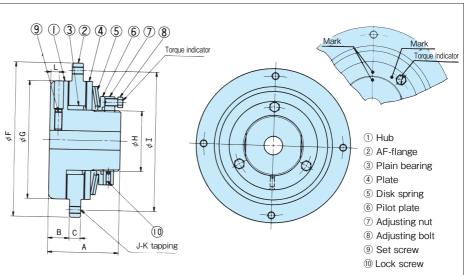
Installation


1. When installing the belt-pulley, sprockets etc, fix the outside diameter (dimension F) of the AF-flange and spigot facing with a bolt tightly. (Example 1) The sprocket minimum number of teeth to be shown is on page 118.

The recommended tolerance of the spigot facing is H7 or H8.

2. When installing the torque arm, fix it to the AF flange with bolts tightly.

Also, the tip of the torque arm should be supported in the rotational direction only.


There should be sufficient free movement for axial direction. (Example 2)

SAFCON

TFK50.70

															Ur	<u>nit : mm</u>
	Sotting torque range	Rough-	Max.								Dimens	ions				Weight
Model No.	Setting torque range N·m {kgf·m}	bore dia.	bore dia.	А	В	С	F (h7)	G	н	I PCD	J-K Nodia.	L	Adjusting nut dia.×pitch	Adjusting bolt dia. X pitch		-
TFK50-1L	$\begin{array}{c} 11.8 \sim 29.4 \\ \{1.2 \sim 3.0\} \end{array}$															
TFK50-1	$\begin{array}{c} 28.4 \sim 125 \\ [2.9 \sim 12.8] \end{array}$	20	42	76	22.8	12	166	127	65	150	4-M8	9	M65×1.5	M8 × 1	M8 x 20	4.0
TFK50-2	$\begin{array}{c} 52.9 \sim 252 \\ 5.4 \sim 25.7 \end{array}$															
TFK70-1L	$\begin{array}{c c} 29.4 \sim 70.6 \\ \hline 3.0 \sim 7.2 \end{array}$															
TFK70-1	69.6 ~ 341 7.1 ~ 34.8	30	64	98	24.8	12	216	178	95	200	6-M8	10	M95×1.5	M10×1.25	M10 x 20	9.4
TFK70-2	$\begin{array}{c c} 134 \sim 650 \\ 13.7 \sim 66.3 \end{array}$															
Noto: 1 All rough bo	re types are in stock															

Note: 1. All rough bore types are in stock. 2. An M5 lock screw is included.

Minimum number of sprocket teeth

Sprocket							
RS35	RS40	RS50	RS60	RS80	RS100	RS120	
32	25						
35	28	23	20	16			
	△ 33 (34)	28	24	19	16	14	
	45	△ 37 (38)	△ 31 (32)	24	20	18	
		△ 47 (48)	△ 39 (40)	△ 31 (32)	25	22	
	32	$ \begin{array}{r} RS33 RS40 \\ 32 25 \\ 35 28 \\ $	RS35 RS40 RS50 32 25 25 35 28 23 $\bigcirc 33 \\ (34)$ 28 45 $\bigcirc 37 \\ (38)$ $\bigcirc 47$ $\bigcirc 47$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RS35 RS40 RS50 RS60 RS80 32 25	RS35 RS40 RS50 RS60 RS80 RS100 32 25 <t< th=""></t<>	

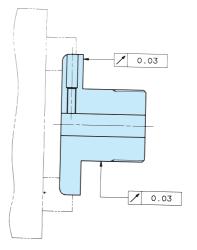
Note: 1.The roller chain which does not require lubricating oil is

recommended.

 △ denotes non-standard A-type sprocket needs a space. In case of using standard sprockets, please use the sprocket in (___).

1L…weak spring

Size -


No. of disk springs 1…1pc 2…2pcs Unit: kgf·m, No symbol if there is no torque setting)

Leyway type (J: New JIS normal type, E: Old JIS 2nd grade , No symbol: special keyway)

Bore diameter _____ (No symbol if there is no finished bore)

Bore Finishing

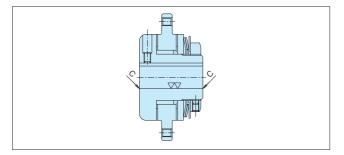
When bore finishing, chuck the outside diameter of the hub as per the following instructions and align the centering. If the centering is bad, there is a possibility of not stable slipping torque due to abnormal run out of friction facing.

The finished bore Torque Keeper TFK

Finished bore products can be made for quick delivery

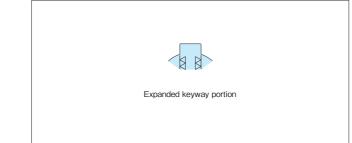
Finished bore and keyway

The finished bores of TFK20 ~ TFK70 have been standardized


Finished hore sizes chart

nished bore sizes chart	Unit : mn
Torque Keeper Model No.	Finished bore size
TFK20-1L	
TFK20-1	9,10,11,12,14
TFK20-2	
TFK25-1L	
TFK25-1	14,15,16,17,18,19,20,22
TFK25-2	
TFK35-1L	
TFK35-1 19,20,22,24,25	19,20,22,24,25
TFK35-2	
TFK50-1L	
TFK50-1	22,24,25,28,29,30,32,33,35,36,38,40,42
TFK50-2	
TFK70-1L	
TFK70-1	32,33,35,36,38,40,42,43,45,46,48,50,52,55,56,57,60,63
TFK70-2	
Delivery	ExJapan 4weeks by sea

Model No.



New JIS keyway normal type LShaft bore

Chamfering and finishing

Shaft bore diameter	Chamfering size
ϕ 25 and less	C0.5
ϕ 50 and less	C1
Above ϕ 51	C1.5

Shaft bore diameter and keyway specifications

- \cdot Shaft bore diameter tolerance is H7
- \cdot The keyway is new JIS (JIS B 1301-1996) "normal type"
- \cdot Set screws come delivered with the product

Selection

When using the Torque Keeper with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

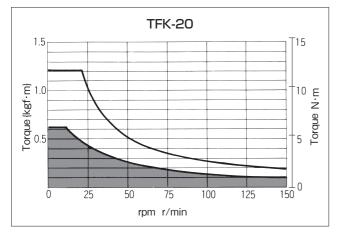
Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

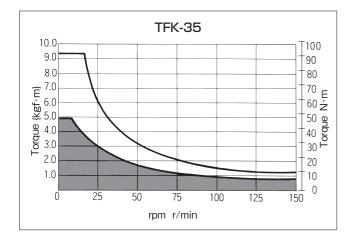
1. Decide the conditions from the table below in accordance with your application (see page 115). Determine the size from the T-N curve graphs on the next page.

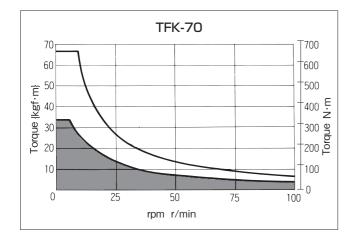
Application	Conditions	Size
Accumulation	Determine the following for the Torque Keeper of each conveyor: (1) Slip torque (2) Slip rpm (3) Slip time (conveyor stop time) (4) Connection time (conveyor drive time) (5) Operating time per day	Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the time used per day exceeds eight hours, we recommend that it be operated within the matrix area of the T-N curve graph.
Braking	Determine the following for the Torque Keeper of each machine: (1) Brake torque (2) Slip rpm (3) Slip time (brake operating time) (4) Connection time (time when brake not operated) (5) Operating time per day Note: Items (3) and (4) are not necessary in case of continual slipping.	Determine a size for which the brake torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the marea of the T-N curve graph.
Dragging	Determine the following for the Torque Keeper of each machine: (1) Slip torque (2) Slip rpm (3) Slip time (4) Connection time (5) Operating time per day	Determine a size for which the slip torque and rpm is within the allowable range (below the curve) on the T-N curve graph. When the slip time is longer than the connection time, and the operating time per day exceeds eight hours, we recommend that it be operated within the marea of the T-N curve graph.

2. Verify that the shaft bore range of the chosen Torque Keeper conforms with the shaft diameter to be installed.

3. Setting the slip torque:

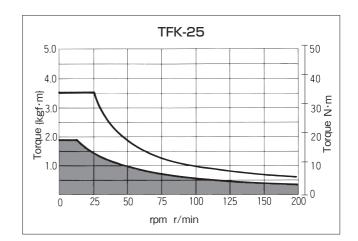

Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 117, 118). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

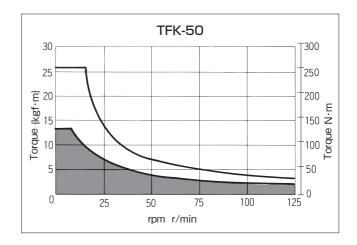

For details, see the section, "Handling Part 2" on page 122.


Points of caution regarding selection

- 1. Do not allow water or oil to get onto the friction surface. This will cause the torque to drop and unstable slip torque will result.
- 2. The T-N curve graph is intended for use when the ambient temperature is below 40° C. Please contact TEM when the ambient temperature is higher than this.
- 3. Please contact TEM when the slip torque for the shaft diameter to be used is smaller than the setting torque range of the Torque Keeper.

T-N Curve { } for reference





Handling Part 1

- 1. All Torque Keeper units are shipped with rough bores.
- Finish a shaft bore in the hub after disassembly. Refer to page 118 regarding shaft bore finish.
- 2. Be careful not to mix up parts when disassembling two or more Torque Keepers. When assembling, be sure to use the original parts. If parts are mixed up, the slip torque will not match the torque curve delivered with the unit.

Note: The T-N curve graph is based on the allowable temperature range of the Torque Keeper. If a more stable slipping torque is necessary, we recommend that it be operated within the state area.

3. Be sure that any toothed belts or roller chains, etc., are not over-tensioned when using the Torque Keeper. Unstable slip torque will result if more than the required tension is applied.

Handling Part 2

Each Torque Keeper is set at a value that is 50% of the maximum set torque range (see pages 117, 118). The torque curve will be included with the unit when it is delivered. This 50% torque is called the "zero point" and it is the basis for setting the slip torque.

To set the slip torque of TFK 20, 25 and 35, tighten the adjustment nut with a hook spanner wrench. To set the slip torque of TFK 50 and 70, tighten the three adjustment bolts with a wrench. Refer to page 113 to determine the zero point.

Setting the slip torque

TFK 20, 25 and 35

- (1)When the required slip torque is over the zero point, tighten the adjustment nut to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.
- (2)When the required slip torque is below the zero point, loosen the adjustment nut beyond the point required and then tighten it to the desired angle, in accordance with the attached torque curve.
 - Example: Set to a slip torque -30° from the zero point.
 - 1 Loosen the adjustment nut to 60° from the zero point.
 - (2) Tighten the adjustment nut from -60° to -30°

TFK 50 and 70

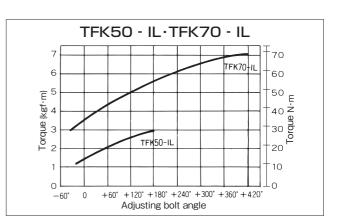
- (1)When the required slip torque is over the zero point, tighten the three adjustment bolts to the angle required in accordance with the attached torque curve. This operation is facilitated by the torque indicator (which shows the angle) and match marks.
- (2)When the required slip torque is below the zero point, loosen the three adjustment bolts beyond the point required and then tighten them to the desired angle, in accordance with the attached torque curve.

Example: Set to a slip torque -60° from the zero point.

- (1) Loosen the adjustment bolts to -90° from the zero point.
- (2) Tighten the adjustment bolts from -90° to -60°

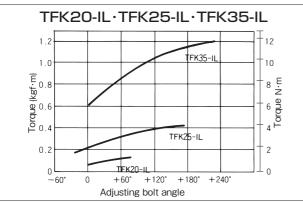
(Caution) When initially setting the Torque Keeper or when changing the setting during operation, we recommend running the machine for two or three minutes to run in before normal operation. This will allow you to obtain a more stable slip torque. Break-in as follows in accordance with the slip torque setting.

(1)When the slip torque is below the zero point:

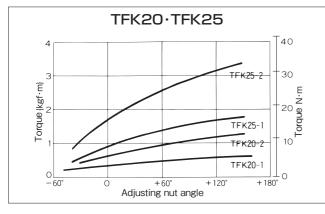

- ① Run in the machine at zero point torque for two to three minutes.
- ⁽²⁾ Set the slip torque as explained above and then enter normal operation.

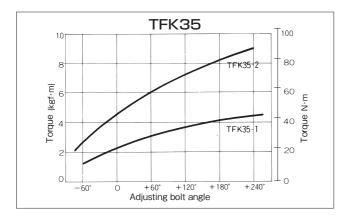
Match Mark

TFK20.25.35 Torque indicator

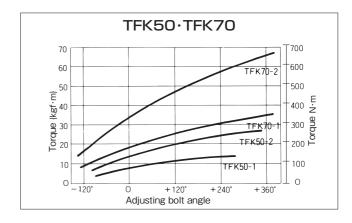


- (2)When the slip torque is above the zero point:
 - ① Set the slip torque as explained above.
 - 0 Run in the machine for two to three minutes.
 - ③ Return the adjustment nut or bolts to the zero point.
 - ④ Set the slip torque again and then begin normal operation.


Torque Curve



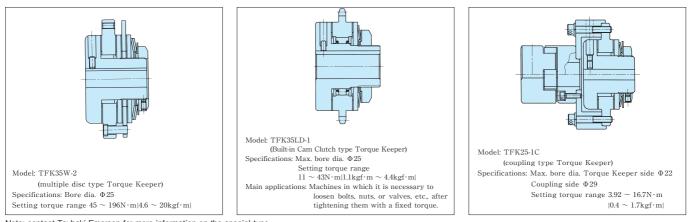
Torque Curve


Standard Spring Type { } for reference

Note: 1. Indicator 0 on torque curve shows 50% of maximum torque.

 Each torque curve is an example. Refer to the attached torque curve of the actual unit.

Finding the zero point


After finishing the shaft bore and re-assembling the unit, determine the zero point as explained below:

TFK 20, 25 and 35

- During re-assembly, match the "0" on the torque indicator with the position of the set screw on the hub (part [®]) on page 117). (Do not allow it to be positioned 180° in the opposite direction.)
- 2. Hand-tighten the adjustment nut and then use a hook spanner wrench to further tighten it until the match mark reaches the "0" position on the torque indicator.

TFK 50 and 70

- 1. Tighten the adjustment nut and align it with the match mark on the hub.
- 2. Hand-tighten the bolts and then use a wrench to further tighten them until the "0"position on the indicators align with the match marks.

Note: contact Tsubaki Emerson for more information on the special type.

Lock screw/tightening torque

Hexagon socket head screw	Tightening torque N·m{kgf·cm}	
M5	3.8 {38.7}	
M8	16 {163}	

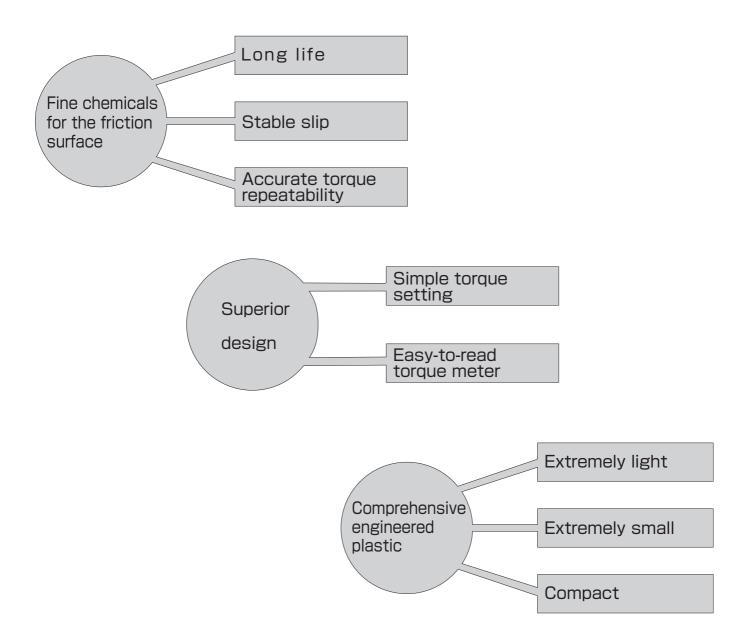
Precautions:

When re-tightening the lock screws, make sure to take the following precautions:

- Confirm that the plug tip has not been removed. If a lock screw is used with a tipless plug, the hub's thread may be damaged or the hub's pocket may get jammed.
- Confirm that the plug's tip has not been heavily damaged. If a lock screw is used with a heavily damaged plug tip, the hub's thread may be damaged.
- $^{*}\mathrm{If}$ 1. or 2. is found to be the case, exchange the damaged parts with new ones.

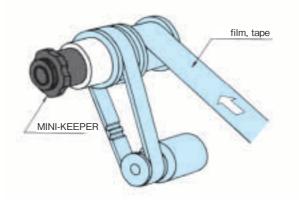
Special Type Torque Keeper

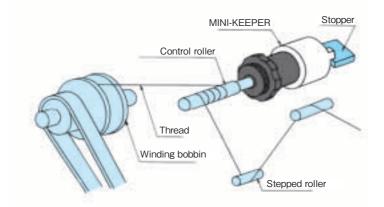
MEMO


MINI-KEEPER

Features

Highly accurate, light and super-compact slipping clutch and brake

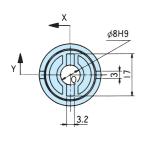

The Tsubaki Emerson MINI-KEEPER is a super-compact slipping clutch and brake, constructed from fine chemicals and engineering plastic. With the MINI-KEEPER we have achieved supreme levels of lightness, compactness, and accuracy among similar devices. The MINI-KEEPER is ideal for braking, accumulating, and dragging applications in OA equipment and precision machinery.

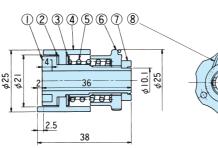


Application Examples

The MINI-KEEPER slips and maintains constant tension on the tape (or film, etc.). It is ideal for braking in the winding and unwinding.

The MINI-KEEPER is installed on the tension controller in previous stage of the winding roll. It provides stable slip torque and maintains stable tension on the thread.

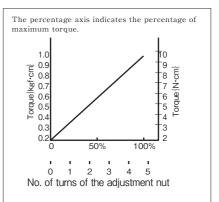



<Other potential applications>

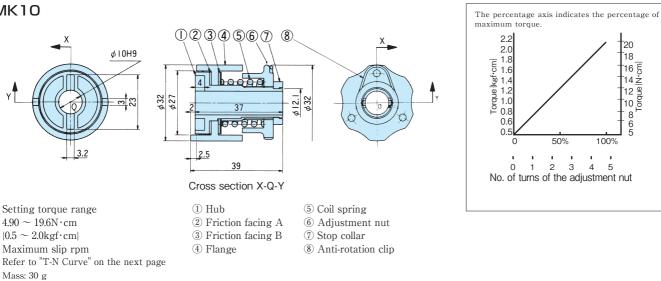
Thermal printer Paper feeder Plotter Copier Textile machine Wire cutter Film processing equipment Accumulation conveyor Automatic packaging machine Coil winding machine Labeler Barcode printer Electronic device manufacturing equipment Various robots Ribbon printer Facsimile

Dimensions

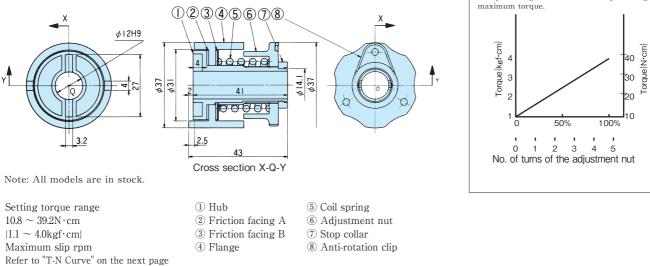
MK08


Cross section X-Q-Y

Setting torque range $1.96 \sim 9.80 \mathrm{N} \cdot \mathrm{cm}$ $\{0.2 \sim 1.0 \text{kgf} \cdot \text{cm}\}$ Maximum slip rpm Refer to "T-N Curve" on the next page Mass: 18 g



- ④ Flange
- (5) Coil spring ⁽⁶⁾ Adjustment nut
- ⑦ Stop collar
 - (8) Anti-rotation clip

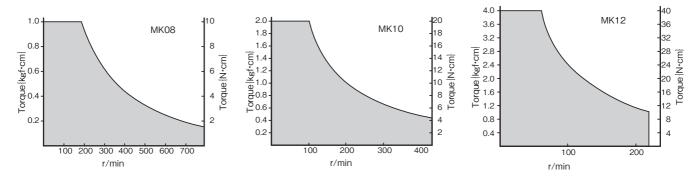

The percentage axis indicates the percentage of

Torque Curves

MK12

Mass: 46 g

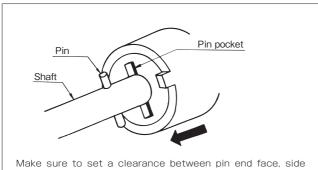
Selection


When using the MINI-KEEPER with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes. Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to human disaster and an accidental falling.

Choose set torque and slip rpm from the part of the T-N curve graphs below.

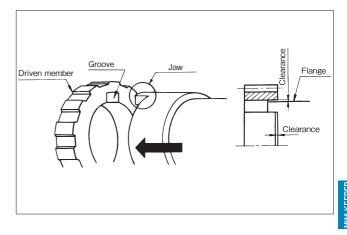
**The T-N curve graph displays the limit value reached by heat generation during continual slip. When the slip time per one operation is short and the interval is long, it is possible to use the MINI-KEEPER in excess of the T-N value. In this case, please contact TEM for a consultation.

*Contact TEM for non-standard specifications.


T-N Curve

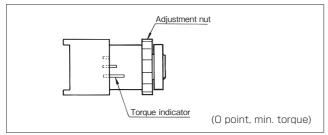
Handling

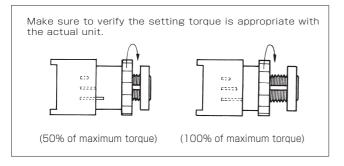
Installation onto a shaft


- The MINI-KEEPER's shaft bore is already finished. We recommend a tolerance for the installation shaft dia. of h7 or h8.
- 2. Use the pin pocket (groove) on the end face of the hub to connect the MINI-KEEPER to the shaft. Insert the pin into the shaft, and then set them to the pin pocket as shown in the diagram below. The clearance should be about 0.5mm.

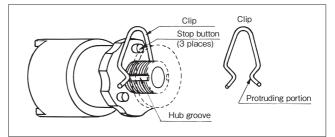
and pin pocket. Pin bore machining is different depending on the sort of pin.

Installation onto a driven member

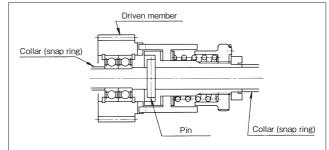

1. Use a jaw at flange to install the MINI-KEEPER onto a driven member (gear, pulley, etc.).


Cut a groove into the end face of the driven member, and slide the jaw into it. At this time, be sure to allow a clearance so that thrust and radial loads do not act on the flange end face including the jaw. The clearance should be about 0.5mm.

Torque setting


1. All MINI-KEEPERs are set at the zero point (minimum torque) before shipment. When in this condition, the scale above the periphery of the adjustment nut is as shown in the diagram below. Verify this.

2. Set the torque by tightening the adjustment nut. Refer to the torque curve on page 127. Use the torque indicator as a guide for the torque setting illustrated below.



3. After setting the torque, fix the adjustment nut to stop it from rotating. Do this by inserting the accessory clip for anti-rotating between the adjustment nut and the stop collar as shown below. Make sure to verify the protruding portion of the clip for anti-rotating is inserted at the hub groove (both sides). Anti-rotation is made by the clip for antirotating hitting the stop button (convex portion) of the adjustment nut.

- Note: 1. If oil or water gets into the friction facings, it will result in abnormal torque and unstable slipping torque.
 - 2. The standard highest operating ambient temperature for the MINI-KEEPER is 40°C max. If this will be exceeded, contact TEM.

Installation example

Control Devices

Electrical

Shock Monitor

Features	p131	
Model reference chart	p132	
Application examples of each and basic operations	type	
Shock Monitor TSM4000Type	p134	
Shock Monitor TSM4000 Type/TSM4000H1 Type	p140 Safety Devices	
Shock Monitor TSM4000H2 Type	p141	
Shock Monitor TSM4000M1 Type	p142	
Shock Monitor TSM4000M2 Type	p143	
Shock Monitor TSM4000C1 Type	p144	
Each type of external connection, parameter	p145~p149	

settings. electric terminal tun

Shock Monitor

(Industrial Property Right Patent No. 2796775 and others)

Features

The Shock Monitor is a power monitoring safety and control device that can detect even the minimal variations in load by monitoring input power.

1. Ideal for monitoring light loads

For a standard motor there are only minute current variations in the light load zone. Load monitoring of the device used in the light load zone is ideal for monitoring electric power variations in the proportional load.

2. Almost completely unaffected by source voltage variation

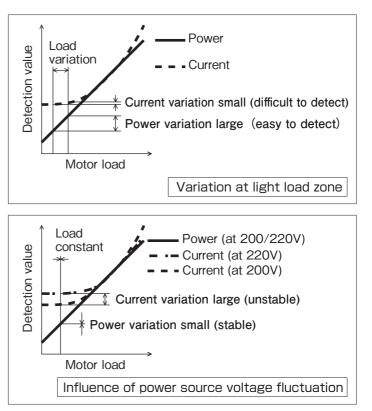
Even with a constant load, if the power supply fluctuates then current will fluctuate largely, thus making accurate load detection impossible. While the Shock Monitor is monitoring machine power it is almost completely unaffected by voltage fluctuation, so stable load detection is possible.

3. Can be used with a wide range of frequencies (5-120Hz)

Can be used with an inverter and a servomotor drive. (The inverter's electronic thermal is for burnout protection. Not suitable for device protection.) %If the power source frequency exceeds 120Hz such

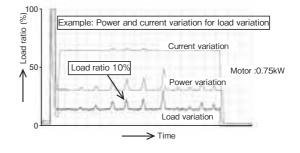
as servo motor for machine tool main spindle, consult TEM.

4. Quick response


Input power is measured every 0.02s. Right after trouble happens, the signal outputs is a minimum of 0.03s.

5. Load condition recording

The direct current voltage that is proportionate to motor input power is output, so the load condition can be recorded on the recorder.


TSM4000 Series
-200 to +200% is converted into 0 to 10V (basic type)
0 to +200% is converted into 0 to 10V (optional)
0 to +200% is converted into 4 to 20mA (optional)
TSM3000 Series
-200 to +200% is converted into 0 to 3V (basic type)
0 to +200% is converted into 0 to 3V (application-specific type)
0 to +200% is converted into 4 to 20mA (special model)

Example: Power and current variation for load variation

- (1)The power variation that is proportional to load variation is emerged.
- (2)From the chart below we can see that with a load variation of about 10%, there is almost no change in current, while power makes remarkable change.

Series Specifications

		•			CU000042T	1000001		T5W2000C1	
Model No.		Model No.	TSM3000	TSM3000H1	TSM3000H2 Load slaved	TSM3000M1 Contact	TSM3000M2	TSM3000C1 Built-in forward/reverse	
Item			*1*2 Basic type	*2 Economy type	tracking type	detection type	Integral power type	sequencer type	
Арр	lied Capacity		0.1 ~ 110kW						
*3 Power source voltage				AC200/220V, AC400/440V					
		Frequency			5~	120Hz			
Cont	rol power s	supply voltage		AC90 \sim 250 V50/60Hz, DC90 \sim 250V Nonpolar					
	≈3 Motor voltage			AC250V, MAX					
Input	Curre	nt sensor		I	DC	2.5V	1	1	
	Cont	rol input	X1, X2, X3, IH	X1, X2, RES	X1, RES	X1, X2, X3, X4, X5	X1, X2, X3, X4, X5	X1, X2	
	No. c	of contact	3c	2c	2c	2a, 1c	2a, 1c	3a, 1b	
out		v contact utput	DC301	V, 0.4A (Inductive loac	AC250V, 0.5A (Induc) DC110V, 0.2A (Indu	tive load $\cos \phi = 0.4$ uctive load) Minimum		V, 4mA	
Output	Output	Mechanical			10,000,00	0 activations			
	relay life	Electrical			100,000	activations			
	Analog	output relay	DC2V ± 1.5V			$ m DC0 \sim 3.0V$			
	Load	Output 1	High1 $-200 \sim 200\%$	HIGH1 $5 \sim 200\%$	HIGH1 1~99%	OUT1 1~99%	OUT1 0~99%	Overload 5 \sim 200 %	
	setting	Output 2	High2 $-200 \sim 200\%$	HIGH2 $5 \sim 200\%$	HIGH2 $5 \sim 200\%$	OUT2 1~99%	OUT2 $5 \sim 200\%$	No load 5 \sim 200%	
-	level	Output 3	Low $-99 \sim 99\%$			OUT3 5~200%	OUT3 5~200%		
Setting	Start time	setting range		1	0.1 ~ 20.0s			$1\sim 300 s$	
Š	Shock time		"MIN" or 0.1 ~ 10.0s						
	setting range		In case	In case motor power souce frequency is 50Hz and higher, shock time at "MIN" is approximately 30ms.					
	Re	ponse	Set by number of moving average	QUICK (Aver	age no. 1 time), NOR/	DRMAL (Average no. 5 times), SLOW (Average no. 20 times)			
	*4 Inhi	oit function	Manual/auto switching	Auto	inhibit	Manual/au	uto switching	Autoinhibit	
	Relay s	elf-holding		Self-hold/auto	reset selectable		Only OUT3 is selectable	Sequencer function	
tion	Switching	detection level	8 steps	4 steps	None	8 s	teps	None	
Function	Test	function			Relay o	utput test			
	Pec	ık-hold	When the	e load ratio exceeds th	e pre-set level (or falls	below it), shows the m	aximum value within s	hock time.	
	fui	nction		Only	when the output is set	as self-hold, it is peak	hold.		
	% Power of	display range	$-200\sim 200\%$			$0\sim 200\%$			
Display	Voltage c	lisplay range			0~	500V			
Disp	Current d	lisplay range			0.01 ~	~ 999A			
	Frequency	display range			5~	120Hz			
Po	ower con	sumption			10VA (Inrush curr	ent 5A within 5ms)			
A	Approxim	ate mass			1.	Okg			
		Ambient temperature			0~	50 ℃			
W	ork Re	ative humidity			45 \sim 85% RH; ther	e is no condensation			
enviro	onment	Altitude			1000m	and less			
		Ambient atomosphere			No corrosi	ve gas, dust			
_									

Note: %1. Basic type can monitor not only positive (plus) torque but also negative (minus) torque.

%2. Basic type and Economy type can monitor power or torque.(Negative torque can not be monitored by the Economy type.) In case of torque monitoring, torque is calculated by the monitored power, and displayed. In this case, rated torque (100%) is that at 60Hz.

In case of orque infinitoring, forque is calculated by the monitored power, and displayed. In this case, rated forque (100%) is that at other increase the frequency is 20Hz and below, errors become larger due to motor efficiency. In this case, use for power monitoring.

*3. In case Shock Monitor is used at AC400/440V, a 400V class resister "TSM4-PR1 (TESM4000 series)" and "TSM-PR2 (TSM3000 series)" is necessary.

*4. This is the function to stop the power monitoring of Shock Monitor.Basic, M1 and M2 types can inhibit manually,

and between inhibit input terminal (refer to page 138, 147, 148) and CM are ON within setting time, or during ON, load tratio [0%] flashing and do not monitor power. In addition, if the frequency changes 4Hz/1s of motor voltage, monitoring is automatically stopped. (Auto inhibit)

🕂 Warning

When using the Shock Monitor with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

Series Specifications

	<u> </u>	Model No.	TSM4000	TSM4000H1	TSM4000H2	TSM4000M1	TSM4000M2	TSM4000C1	
Item			*1*2 Basic type	%₂ Economy type	Load slaved tracking type	Contact detection type	Integral power type	Built-in forward/reverse sequencer type	
Capacity					0.1~	110kW			
Applied *3 Power source		Power source voltage			AC200/220V,	AC400/440V			
motor Frequency				$5 \sim 120 \text{Hz}$					
Contr	ol power :	supply voltage	AC90 ~ 250V50/60Hz, DC90 ~ 250V Nonpolar						
	*3 Mo	tor voltage			AC250	V, MAX			
Input	Curre	nt sensor			DC2	2.5V			
	Cont	rol input	X1, X2, X3, IH, RST	X1, X2, RST	X1, RST	X1, X2, X3, X4, X5	X1, X2, X3, X4, X5	X1, X2	
	No. d	of contact	3с	2c	2c	Зс	Зс	2a, 1b, 1c	
	Relay	y contact			AC250V, 0.5A (Induct				
Output	o	utput	DC30V	/, 0.4A (Inductive load) DC110V, 0.2A (Indu	uctive load) Minimum l	load applicable DC24	V, 4mA	
õ	Output	Mechanical			10,000,000) activations			
	relay life	e Electrical			100,000 d	activations			
	Analog	output relay			DC0 ~	~ 10V			
	Load	Output 1	High1 – 200 \sim 200%	HIGH1 $5 \sim 200\%$	HIGH1 1 \sim 99%	OUT1 1~99%	OUT1 0 \sim 99%	Overload 5 $\sim 200\%$	
	setting	Output 2	High2 – 200 \sim 200%	HIGH2 $5 \sim 200\%$	HIGH2 $5 \sim 200\%$	OUT2 1~99%	OUT2 $5 \sim 200\%$	No load 5 $\sim 200\%$	
<u>م</u>	level	Output 3	Low $-99 \sim 99\%$			OUT3 $5 \sim 200\%$	OUT3 $5 \sim 200\%$		
Setting	Start time	setting range			$0.1 \sim 20.0 \text{s}$			$1\sim 300 s$	
0,	Shock time		"MIN" or 0.1 \sim 10.0s						
	setting range			e motor power souce fi	requency is 50Hz and l	higher, shock time at "I	MIN" is approximately	7 50ms.	
	Reponse		Set by number of moving average		age no. 1 time), NORA	AAL (Average no. 5 ti	mes), SLOW (Average	e no. 20 times)	
	*4 Inhibit function		Manual/auto switching	Auto	inhibit	Manual/au	to switching		
	Relay s	elf-holding		Self-hold/auto	reset selectable	1	Only OUT3 is selectable	Sequencer function	
Function	Switching	detection level	8 steps	4 steps	None		teps	None	
Fun		function			Relay ou	-			
	Peo	ak-hold	When the	e load ratio exceeds th	e pre-set level (or falls l	below it), shows the mo	aximum value within sl	hock time.	
		nction		Only	when the output is set	as self-hold, it is peak	hold.		
		display range	$-200 \sim 200\%$			0~200%			
		display range			0~.	500V			
		display range		0.01 ~ 999A					
		display range			5~1				
		nsumption				ent 5A within 5ms)			
A	pproxim	ate mass				Okg			
		Ambient temperature			0~				
Wo		eative humidity			,	e is no condensation			
enviro	nment	Altitude				and less			
		Ambient atomosphere			No corrosiv	ve gas, dust			

Note: %1. Basic type can monitor not only positive (plus) torque but also negative (minus) torque.

#2. Basic type and Economy type can monitor power or torque (Negative torque can not be monitored by the Economy type.)

In case of torque monitoring, torque is calculated by the monitored power, and displayed. In this case, rated torque (100%) is that at 60Hz.

In case the frequency is 20Hz and below, errors become larger due to motor efficiency. In this case, use for power monitoring.

%3. In case Shock Monitor is used at AC400/440V, a 400V class resister "TSM4-PR1" is necessary.

**4. This is the function to stop the power monitoring of Shock Monitor.Basic, M1 and M2 types can inhibit manually, and between inhibit input terminal and CM are ON within setting time, or during ON, load tratio [0%] flashing and do not monitor power.

In addition, if the frequency changes 4Hz/1s of motor voltage, monitoring is automatically stopped. (Auto inhibit)

🕂 Warning

When using the Shock Monitor with a human transport device or a lifting device, install a suitable protection device on that equipment for safety purposes.

Otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

SAFCON

Redesigned Quick detection of minute load variations Introducing Shock Monitor TSM4000

Effective for factory "visualization" (optionally available)

The Shock Monitor features an optional communication function with a commercially-available touch panel display unit, allowing you to display the current value of the Shock Monitor and its trend graph on a display unit located at a remote site.

Additionally, it's now possible to change parameters on the Shock Monitor remotely by specifying them on the touch panel.

*For details on the optional communication function, contact TEM.

Basic operations of the TSM4000

Features

Safety design

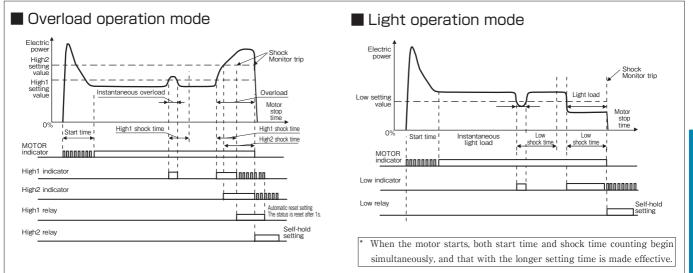
The terminal block is designed with a cover for safety, resulting in a structure which prevents dust or other foreign matters from entering the main unit.

Analog output

An analog output of 0 to 10V is included as a standard feature. Perform monitoring and actions corresponding to the loads.

(The output can be changed optionally to 0 to 5V or 4 to 20mA.)

Environmentally conscious

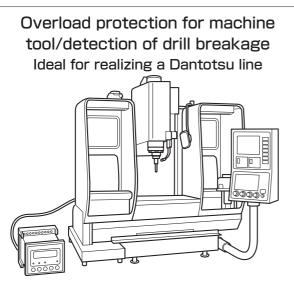

Featuring a backlight auto-off function that enables effective energy-saving operation.

The Shock Monitor is an environmental-friendly product which contains no RoHS regulated hazardous substances.

Improved operability

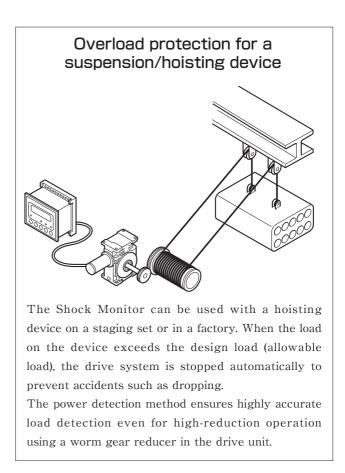
Featuring a new panel-mounting type which allows easy connection of wires to the terminal block for panel mounting.

DIN rail mounting is also available.


1) The load is compared with a preset overload detection level. When overload status (or light load status) continues for a certain period of time (shock time), an abnormal load notification is sent externally.

2) Two abnormal signals are provided for upper limit and lower limit. These can be used as notification signals or motor stop signals.

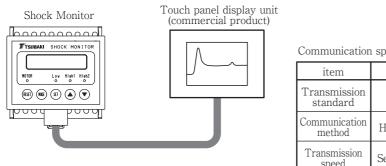
3) When the motor starts, the load detection is suspended for a preset period of time (start time) in order to avoid erroneous output during acceleration.


4) A torque monitoring function (20 to 120Hz) is provided which is effective when an inverter is used. Refer to Note)*2 on page 132.

Usage examples

In a drilling process using a machine tool, the Shock Monitor reliably detects not only overload but also any breakage of the drill, preventing defective products from being produced during unattended operation.

Additionally, using a model which calculates integral power values enables detection of wear in the drill with high accuracy. Replacing the drill before breakage can prevent yield decreases.

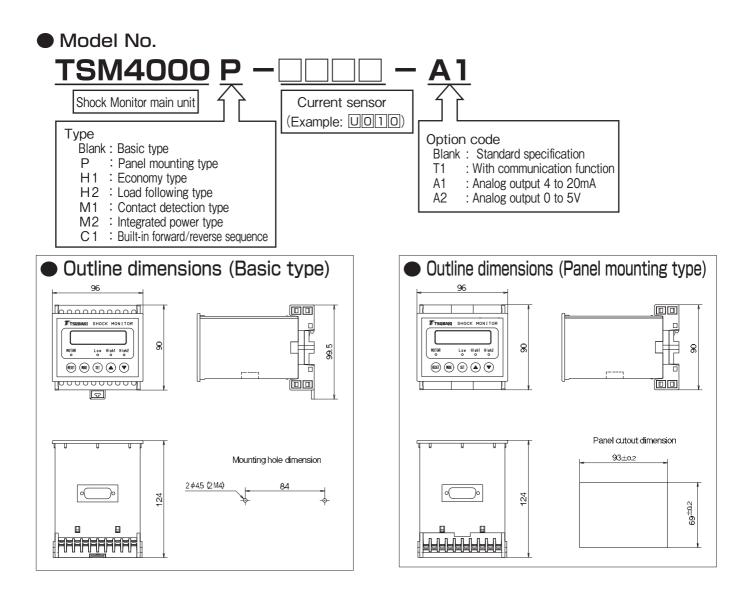


Application examples of the optional communication function

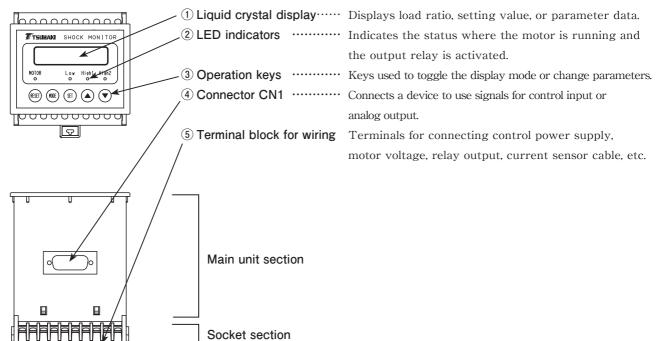
The optionally available communication function enables the combination of the Shock Monitor and a commercially-available touch panel display unit to be used in the following ways:

<Functions available with the display unit>

- Displaying of electrical power, current, and voltage data in graph form
- Saving of the above data and transferring the data into memory
- Reading/writing of setting values for a specified parameter


Communication specifications						
item Brief specifications						
Transmission standard	RS485					
Communication method	Half-duplex, bidirectional, Modbus protocol					
Transmission speed	Selectable from 2.4, 4.8, 9.6, 19.2, and 38.4kbps					

<Usage>


- The production process can be monitored using real-time displays of power and current waveforms.
- Checking the waveform of abnormal events is effective in preventive measures or making improvements to guard against device damage.

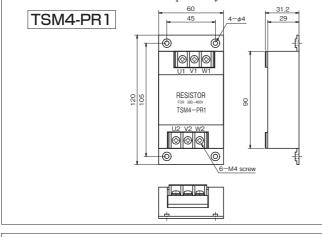
For details, contact TEM.

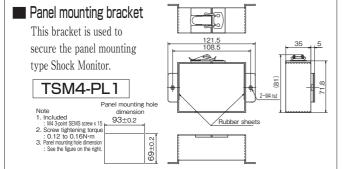
Part names and functions

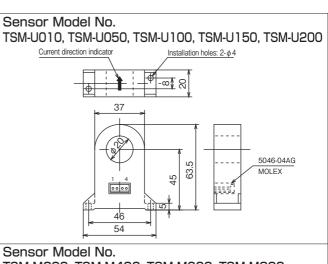
TSM40(

Option

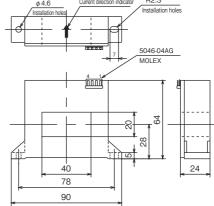
Current sensor (attachment)

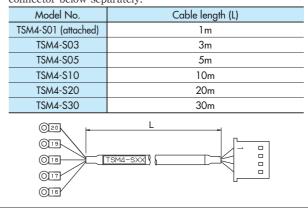

The current sensor brings motor current into the Shock Monitor unit.

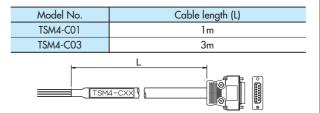

Select a model from the chart below depending on the motor capacity and voltage.


	AC 200/2	20V motor	AC 400/4	40V motor
Motor capacity (kW)	Sensor Model No.	Number of wires that pass through the CT hole	Sensor Model No.	Number of wires that pass through the CT hole
0.1	TSM-U010	6	TSM-U010	12
0.2	TSM-U010	3	TSM-U010	6
0.4	TSM-U010	2	TSM-U010	3
0.75	TSM-U050	6	TSM-U010	2
1.5	TSM-U050	3	TSM-U050	6
2.2	TSM-U050	2	TSM-U050	5
3.7	TSM-U050	1	TSM-U050	3
5.5	TSM-U050	1	TSM-U050	2
7.5	TSM-U100	1	TSM-U050	1
11	TSM-U100	1	TSM-U050	1
15	TSM-U150	1	TSM-U100	1
18.5	TSM-U150	1	TSM-U100	1
22	TSM-U200	1	TSM-U100	1
30	TSM-M300	1	TSM-U150	1
37	TSM-M300	1	TSM-U150	1
45	TSM-M400	1	TSM-U200	1
55	TSM-M600	1	TSM-M300	1
75	TSM-M600	1	TSM-M300	1
90	TSM-M800	1	TSM-M400	1
110	TSM-M800	1	TSM-M400	1

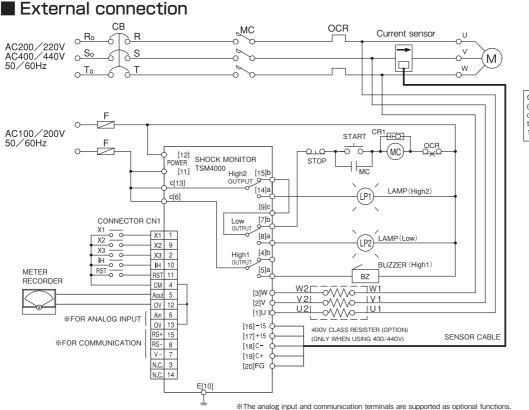
400V class resister


It is necessary in case the motor voltage is 400/ 440V. Please order separately.




Sensor cable

A 1 m length sensor cable (TSM4-S01) comes standard to connect the Shock Monitor and the current sensor. In case a different cable is required, order the cable with the connector below separately.



I/O cable

This is an optional cable used for control input, analog output, or communication functions. If should be ordered separately when necessary.

CB : Circuit breaker F : Fuse MC : Electromagnetic contactor for motor OCR : Over current relay CR1 : CR filter START: Start button STOP : Stop button

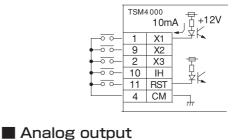
Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

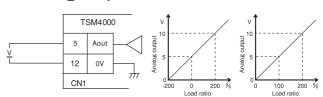
Note:

- Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of pass through and current direction.
- Make sure to insert the current sensor into the "phase V", and use sensor cable TSM-SXXN to connect with Shock Monitor.
- connect with Shock Monitor. 3. If using a 400/440V motor, use 400V class resister shown in dashed line.
- Connect motor voltage terminal of Shock Monitor U[1], V[2], W[3] with the phaseof [U], [V], [W] respectively.
- Use relay for minute electric current for [X1], [X2], [X3], [IH], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

Function of terminals

Terminal block High2 Power Current sensor T output T supply										
			19	18	17	16	15	14	13	12 11
			C+	C-	+15	-15	ß	Ş	ίŢ	POWER
		U	V	W	ß	βl		ß	Ŷ	
		1	2	3	4	5	6	7	8	9 10
		VC	lotor oltag nput		Г	ligh utpu		i∟ '	Lov outp	
Name	Name Symbol		IN/ OUT		Pin No.			Explanation		
Control power		POWER IN 11			1	Connection of control				
supply	POWER				2	power supply				
Ground	E –				0	Ground terminal				
	- 15	OUT		1	6					
Current	+15	OUT		1	7		Sensor cable			
sensor	C –	IN		1	8	Se				
sensor	C+	IN		1	9					
	FG	- 20			20					
Motor	U	I	IN		1	Motor voltage input				
	V	I	IN		2		terminal			
voltage	W	I	Ν		3					
	b	0	UT		7	Relay contact output		tuatuo		
Low output	α	0	UT		8	when the lower limit			er limit	
colpoi	с	0	UT		9	OU	tput	is a	ctiv	ated
Hiah 1	b	0	UT		4	Relay contact output		output		
High 1	α	0	UT		5 when the hi		high	gher İimit 1		
output	с	0	UT		6	output is activated			ated	
High2	с	0	UT	1	3	Re	lay	cont	act	output
output	α	0	UT	1	4	when the higher limit 2 output is activated			ner İimit 2	
	b	0	UT	1	5				ated	


· Connector CN1


х	1	Х	3	N.	C.	С	М	Ac	out	А	in	V	-	R	<u></u> 3-
-	1	2	2	3	3	4	4	Ę	5	6	6	7	7	8	3
	g)	1	0	1	1	1	2	1	3	1	4	1	5	
	Х	2	łł	-	RS	ST	0	V	0	V	N.	C.	RS	3+	

Note) Connection to pins No. 3 and 14 is prohibited.

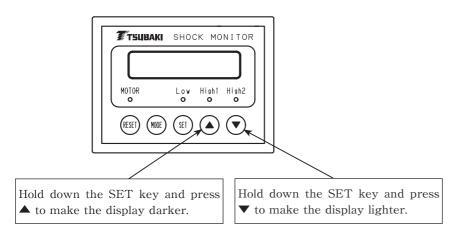
Name	Symbol	IN/ OUT	Pin No.	Explanation
Process switch	X1	IN	1	
	X2	IN	9	Power process terminal
	Х3	IN	2	
Inhibit	IH	IN	10	Inhibit terminal
Common	СМ	IN	4	X1,X2,X3,IH,RST common terminal
Reset	RST	IN	11	Resetting self-hold status

Control input

When the model supports the terminal function as standard, the analog output characteristic can be selected with Parameter 21: OUTPUT SELECT.

TSM400

Parameter setting


No.	Parameter	ter Data		Contents		
1	Parameter Lock	(1)Unlocked (2)Locked	(1)	All parameters can be changed. Parameters other than this parameter cannot be changed.		
2	Motor Voltage	(1)200-230V (2)380-460V	(1)	Motor voltage 3 phase 200V class Motor voltage 3 phase 400V class		
3	Motor kW	0.1 ~ 110kW	0.75	Setting motor capacity		
4	Start Time	0.1 ~ 20.0s	3.0s	Setting the start time		
5	Process	1~8	1	Number of process		
6	High2 Level Process[1]	-200 ~ -5% 5 ~ 200%	100%	Higher 2 level of process 1		
7	Shock Time H2	MIN,0.1 ~ 10s	1.0s	Higher 2 shock time		
8	Output Relay H2	(1)Self-Hold (2)Auto-Reset	(1)	Selecting the upper limit 2 output operation mode.		
9	High1 Level Process[1]	-200 ~ -5% 5 ~ 200%	80%	Higher 1 level of process 1		
10	Shock Time H1	MIN,0.1 ~ 10s	1.0s	Higher 1 shock time		
11	Output Relay H1 Low Level	(1)Self-Hold (2)Auto-Reset	(2)	Selecting the upper limit 1 output operation mode.		
12	Process[1]	-99 ~ 0 ~ 99%	0%	Lower level of process 1		
13	Shock Time L	MIN,0.1 ~ 10s	1.0s	Lower shock time		
14	Output Relay L	(1)Self-Hold (2)Auto-Reset	(1)	Selecting the lower limit output operation mode.		
15	Motor Efficiency	10~100%	100%	Motor efficiency.		
16	Response	$1 \sim 50$ times	5times	Number of moving average sampling operations		
17	Inhibit Time	IH,0.1 ~ 10s	IH	Inhibit time※		
18	Auto Inhibit	(1)On (2)Off	(2)	Setting the auto inhibit function.		
19	Power/Torque	(1)Power (2)Torque	(1)	Monitor with motor input power Monitor with the torque calculated by the power		
20	H2Relay Logic	(1)Fail Safe (2)Nomal Logic	(2)	Selecting the fail-safe operation.		
21	Output Select	$(1)-200 \sim 200\%$ $(2)0 \sim 200\%$	(2)	Selecting the analog output.		
22	LCD Backlight	(1)Always (2)2min	(1)	Keeping the backlight on at all times. Turning the backlight off two minutes after key operation.		
23	Trip Test	(1)Motor on/off (2)Motor off	(1)	Selecton of test mode during motor operation		

**Inhibit time: Time for which the power detection is temporarily stopped.

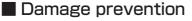
LCD contrast adjustment

When the LCD display is illegible, hold down the SET key and press \blacktriangle or \blacktriangledown key to adjust it.

(Note that excessively high contrast will shorten the LCD service life.)

New and unique applications for the Shock Monitor

Various application-specific types based on the "Basic type" of TSM4000!!


Our line-up of Shock Monitors fit perfectly with all kinds of applications.

Application examples and basic operations of each type

1. [Basic type] TSM4000 type ······ [Economical type] TSM4000H1 type: For general industrial machines

The economical type has fewer functions than the basic type.

Refer to the below charts for a comparison of Shock Monitor functions.

Key point

There is little current variation due to a high gear ratio, making it difficult for the Shock Relay to detect the overload, so a power detecting type Shock Monitor is the best option.

Applications

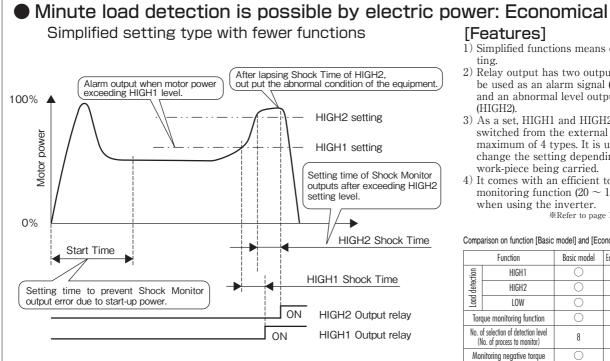
Assembly conveyor, water and sewage treatment, garbage disposal equipment conveyors, etc.

Basic operations of TSM4000H1

Fermentation line Shock Monito

Carrying

bread dough


<u>Key point</u>

Shock Monitor detects even minute load rise due to the lack of lubrication for the chain. It then sends an alarm signal to operate the automatic lubricator.

00000

Applications

Food processing machines that operate 24 hours a day, etc.

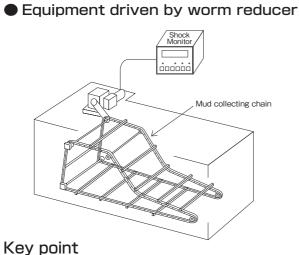
[Features]

- 1) Simplified functions means easy setting.
- 2) Relay output has two outputs. It can be used as an alarm signal (HIGH1) and an abnormal level output (HIGH2).
- 3) As a set HIGH1 and HIGH2 can be switched from the external for a maximum of 4 types. It is useful to change the setting depending on the work-piece being carried.
- 4) It comes with an efficient torque* monitoring function (20 \sim 120Hz) for when using the inverter.

*Refer to page 137, Note: *2

Comparison on function [Basic model] and [Economical model]

	Function	Basic model	Economical model		
ction	HIGH1	0	0		
Load detection	HIGH2	0	0		
Load	LOW	0	×		
Toro	que monitoring function	0	0		
	f selection of detection level lo. of process to monitor)	8	4		
Мо	nitoring negative torque	0	×		

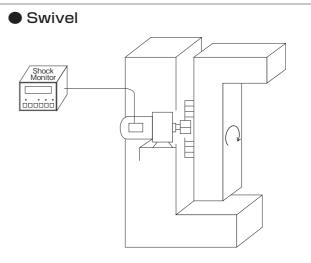

Preventive maintenance

Bread making line lubrication maintenance

Application examples and basic operations of each type

2. [Load following type] TSM4000H2 Type…For general industrial machines

Protection for equipment which vary in efficiency



The efficiency of the reducer varies together with operating time. As well, even for equipment where the load ratio varies, it is possible to detect abnormal condition due to the load following function.

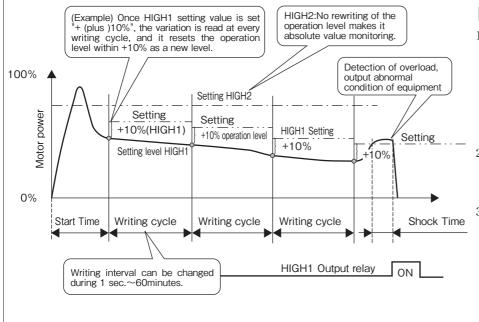
Applications

Water treatment equipment, etc.

Protection for equipment which periodically varies in load.

Key point

Even if the load of the equipment varies during 1 rotation, it is possible to detect abnormal conditions due to the load following function.


Applications

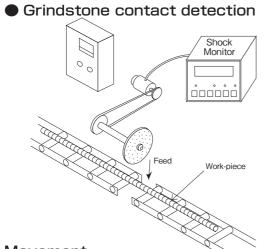
Medical equipment, etc.

Basic operations of TSM4000H2

The set value automatically varies and follows the variation of load: load following

Because variation in machine efficiency does not affect the Shock Monitor, it makes the ideal overload protection device.

[Features]


- 1) For equipment where mechanical efficiency varies by periodically following the operational level and minimizing the efficiency variation effect, the practical overload state can be detected.
- 2) The writing cycle can be changed to meet the fluctuations of the efficiency change.
- 3) While the operational level of HIGH2 is constant and has no variation, absolute value monitoring can be done by HIGH2.

Application examples and basic operations of each type

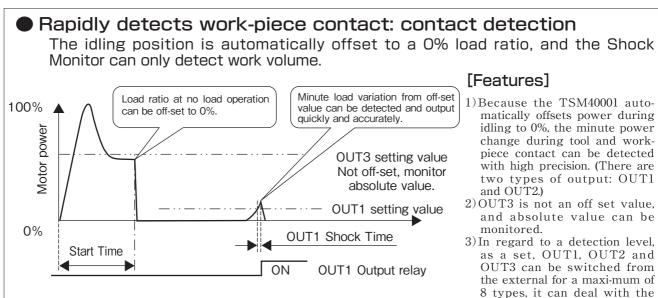
3.[Contact detector type] TSM4000M1 Type····For machine tools (Industrial Property Right Patent No.: 3108798)

Tool and work-piece contact detection (Feed speed control, etc.)

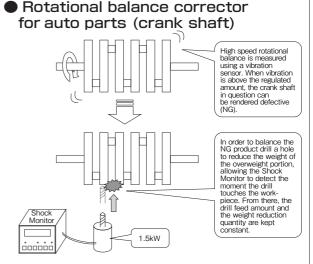
Movement

Until the grindstone makes contact with the workpiece the feed speed is high. After the Shock Monitor has detected contact with the work-piece, the TSM4000M1 immediately switches to a low feed speed. (shortening the working time)

Key point


The instant a minute load contacts the work-piece, it is quickly and accurately detected. Consequently, a substantial decrease in the finishing cycle time is realized.

Applications


Metalworking, machine tools, etc.

Note: If the power source frequency exceeds 120Hz, such as a servo motor for a machine tool's main spindle, consult TEM.

Basic operations of TSM4000M1

Tool and work piece contact detection

Movement

When drilling the hole, if the drill touches the workpiece, it will be detected and the Shock Monitor will immediately output. From there, by keeping feed time constant, the drilled quantity is managed uniformly.

Key point

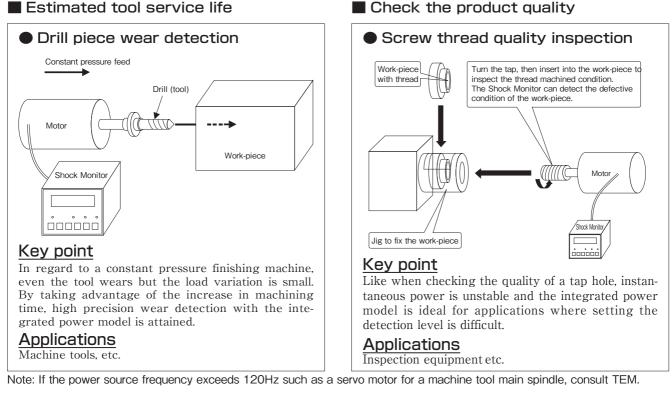
The Shock Monitor ignores common changes to idling power. Because it can only detect work volume, it can securely judge the moment contact is made with the drill (0.03s).

Applications

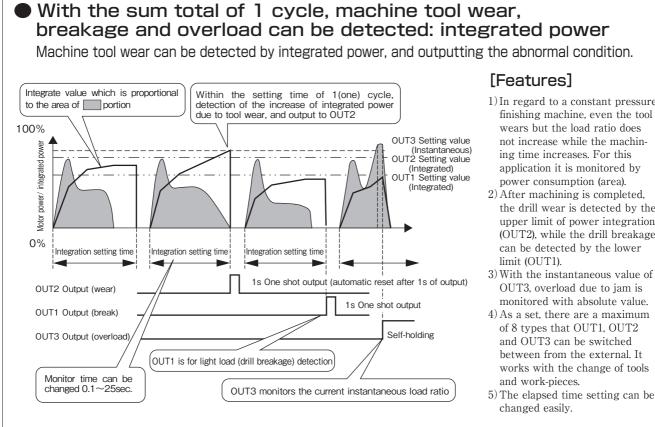
Machine tools (drilling machine, grinding machine, etc.)

work-piece.

change of grindstone and


Shock Monitor

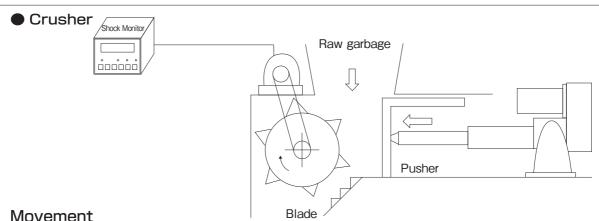
142


Application examples and basic operations of each type

4.[Integrated power model] TSM4000M2 Type···· For machine tools

By integrating 1 cycle of power from the manufacturing process, tool wear condition and breakage, as well as overload can be detected.

Basic operations of TSM4000M2



- 1) In regard to a constant pressure finishing machine, even the tool wears but the load ratio does not increase while the machining time increases. For this application it is monitored by power consumption (area).
- 2) After machining is completed, the drill wear is detected by the upper limit of power integration (OUT2), while the drill breakage can be detected by the lower
- OUT3, overload due to jam is monitored with absolute value. 4) As a set, there are a maximum of 8 types that OUT1, OUT2 and OUT3 can be switched between from the external. It
- 5) The elapsed time setting can be

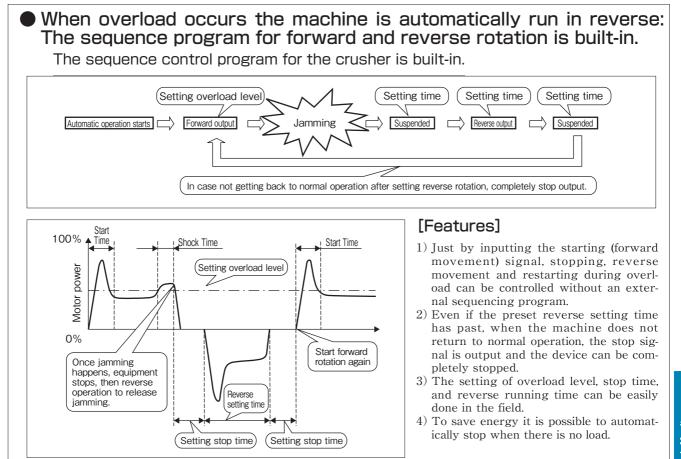
Application examples and basic operations of each type

5. For the forward and reverse sequence program built-in type: TSM4000C1 Type For crushers

Crusher blade protection and forward/reverse control

Movement

Precisely detects load on crusher blades. When a jam occurs, the machine automatically detects overload \rightarrow the machine stops \rightarrow moves into reverse \rightarrow stops \rightarrow moves forward repeatedly until the machine becomes un-jammed.


Key point

Blade life span increases significantly. The sequence program necessary for forward and reverse movement is built-in, so it is easy to control the crusher.

Industry

Crusher for waste disposal, reducer, screw conveyor, etc.

Basic operations of TSM4000C1

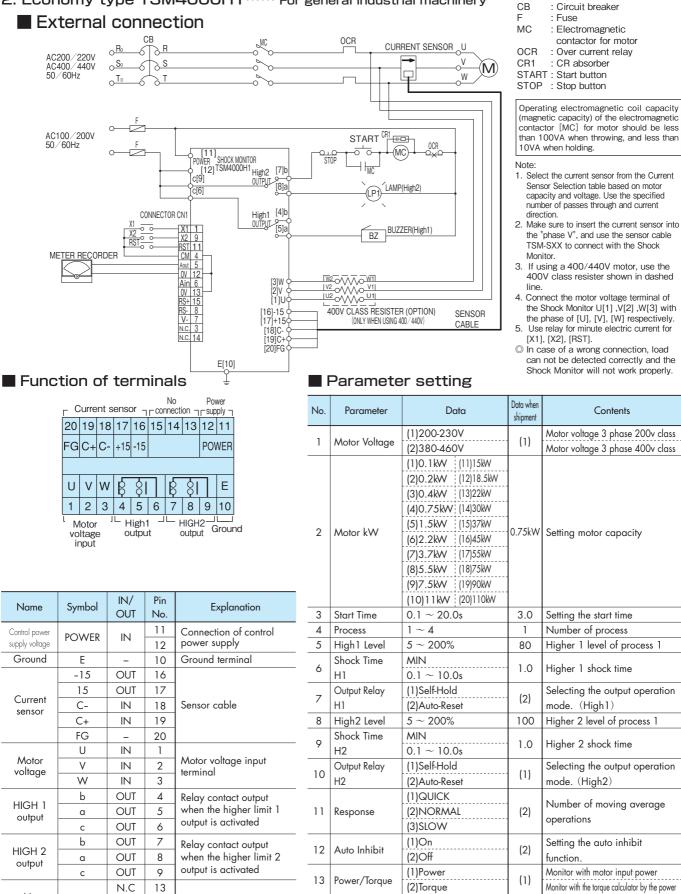
Shock Monitor

No

connection

N.C

N.C


14

15

Do not connect anything

External connection/ parameter settings/ terminal functions

2. Economy type TSM4000H1 ······ For general industrial machinery

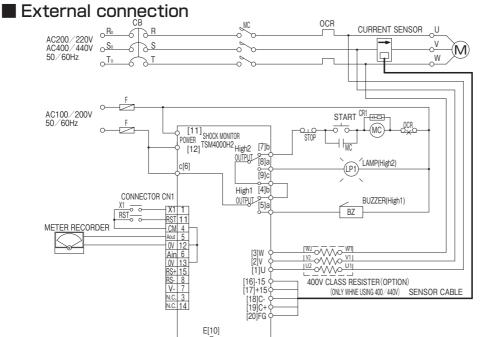
LCD Backlight

14

(1)Always

(2)2min

Setting the backlight

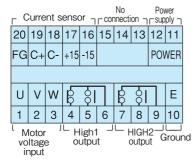

illumination time.

(1)

External connection/ parameter settings/ terminal functions

3. Load following type TSM4000H2.....For general industrial machinery

 \bot


CB F MC	 : Circuit breaker : Fuse : Electromagnetic contactor for motor
CR1 START	: Over current relay : CR absorber : Start button : Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

Note:

- 1 Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- 2. Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.
- 4. Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
- 5. Use relay for minute electric current for [X1], [RST].
- In case of a wrong connection, load can not be detected correctly and the Shock Monitor will not work properly.

Function of terminals

Name	Symbol	IN/ OUT	Pin No.	Explanation	
Control power		IN	11	Connection of control	
supply voltage	POWER		12	power supply	
Ground	E	_	10	Ground terminal	
	-15	OUT	16		
6	15	OUT	17		
Current sensor	C-	IN	18	Sensor cable	
	C+	IN	19		
	FG	-	20		
Motor voltage	U	IN	1		
	V	IN	2	Motor voltage input terminal	
	W	IN	3		
	b	OUT	4		
HIGH 1 output	a	OUT	5	Relative value higher limit output 1	
ouipui	с	OUT	6		
	b	OUT	7		
HIGH 2 output	a	OUT	8	Absolute value higher limit output 2	
	с	OUT	9		
			13		
No connection	-	N.C	14	Do not connect anything	
		N.C	15		

Data when No Parameter Data Contents shipment (1)200-230V Motor voltage 3 phase 200v class 1 Motor Voltage (1) (2)380-460V Motor voltage 3 phase 400v class (1)0.1kW (11)15kW (2)0.2kW (12)18.5kW (3)0.4kW (13)22kW (4)0.75kW (14)30kW (5)1.5kW (15)37kW 2 Motor kW 0.75kW Setting motor capacity (6)2.2kW (16)45kW (7)3.7kW (17)55kW (8)5.5kW (18)75kW (9)7.5kW (19)90kW (10)11kW (20)110kW 3 Start Time $0.1 \sim 20.0s$ 3.0 Setting the start time High1 Level 1~99% Value of higher limit 1 4 10 Shock Time MIN 5 1.0 Setting HIGH 1 shock time $0.1 \sim 10.0s$ H1 **Output Relay** (1)Self-Hold (2) 6 Setting the output operation mode (2)Auto-Reset H1 7 100 High2 Level $5\sim 200\%$ Value of higher limit 2 Shock Time MIN 8 1.0 Setting HIGH 2 shock time H2 $0.1 \sim 10.0s$ Output Relay (1)Self-Hold 9 (1) Selecting the output operation mode H2 (2)Auto-Reset (1)QUICK 10 Response (2)NORMAL (2) Number of moving average operations (3)SLOW (1)On 11 Auto Inhibit (2) Setting the auto inhibit function (2)Off (1)Interval 12 Offset Mode (2) Setting the reference writing

50s

(1)

Writing cycle

Setting the backlight

illumination time.

Parameter setting

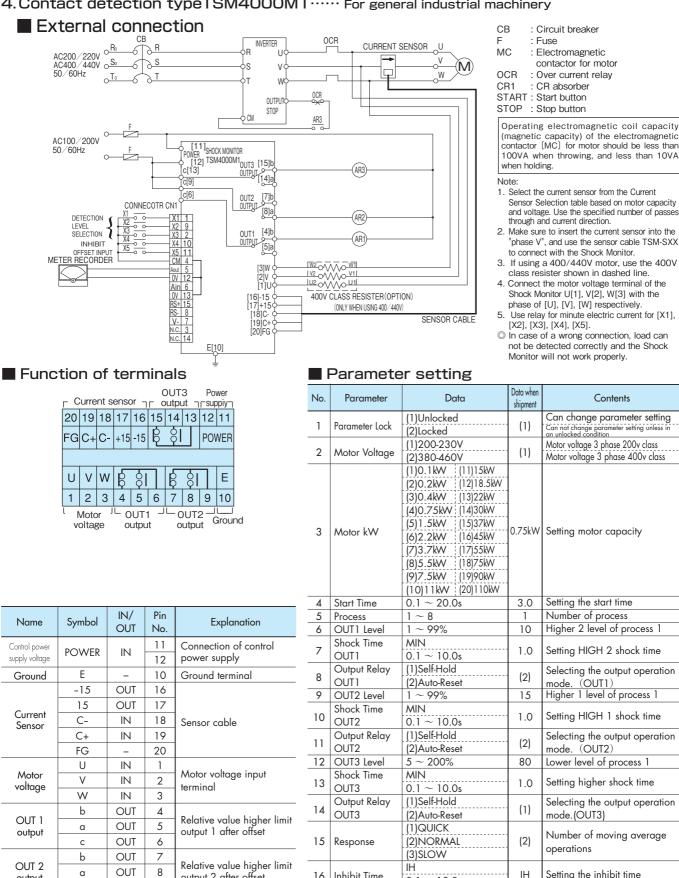
13

14

Interval Time

LCD Backlight

(2)X1


 $1\sim 60s$

(2)2min

 $1.1 \sim 60.0 \text{min}$ (1)Always

External connection/ parameter settings/ terminal functions

4. Contact detection typeTSM4000M1 ······ For general industrial machinery

Contents

IH

(2)

(1)

Setting the inhibit time

Setting the backlight

illumination time

Setting the auto inhibit function

Inhibit Time

Auto Inhibit

LCD Backlight

0.1 ~ 10.0s

(1)Always

(1)On

(2)Off

(2)2min

16

17

18

output 2 after offset

higher limit output.

Non-offset absolute value

9

13

14

15

OUT

OUT

OUT

OUT

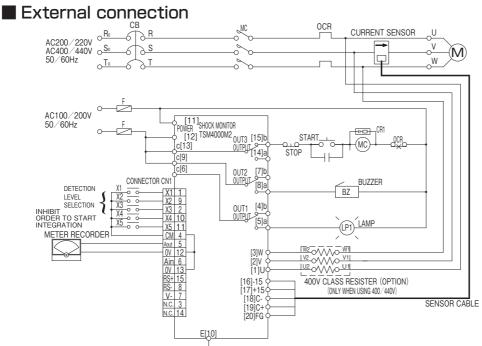
output

OUT 3

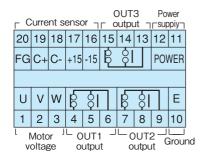
output

с

с


a

b



External connection/ parameter settings/ terminal functions

5. Integral power typeTSM4000M2······ For general industrial machinery CB

Function of terminals

Name	Symbol	IN/ OUT	Pin No.	Explanation
Control power	POWER	IN	11	Connection of power
supply voltage			12	source
Ground	E	-	10	Ground terminal
	-15	OUT	16	
c .	15	OUT	17	
Current Sensor	C-	IN	18	Sensor cable
	C+	IN	19	
	FG	-	20	
Motor voltage	U	IN	1	
	V	IN	2	Motor voltage input terminal
	W	IN	3	
	b	OUT	4	
OUT 1 output	a	OUT	5	Lower limit output after integration
output	с	OUT	6	
	b	OUT	7	
OUT 2 output	a	OUT	8	Higher limit output after
	с	OUT	9	
	с	OUT	13	Higher limit output at
OUT 3 output	a	OUT	14	instantaneous electric
	b	OUT	15	power

Parameter setting

CB F		Circuit breaker Fuse
MC		Electromagnetic
		contactor for motor
OCR	:	Over current relay
CR1	:	CR filter
START	:	Start button
STOP	:	Stop button

Operating electromagnetic coil capacity (magnetic capacity) of the electromagnetic contactor [MC] for motor should be less than 100VA when throwing, and less than 10VA when holding.

Note:

- Select the current sensor from the Current Sensor Selection table based on motor capacity and voltage. Use the specified number of passes through and current direction.
- Make sure to insert the current sensor into the "phase V", and use the sensor cable TSM-SXX to connect with the Shock Monitor.
- 3. If using a 400/440V motor, use the 400V class resister shown in dashed line.
- Connect the motor voltage terminal of the Shock Monitor U[1], V[2], W[3] with the phase of [U], [V], [W] respectively.
 Use relay for minute electric current for
- [X1], [X2], [X3], [X4], [X5]. In case of a wrong connection, load
- can not be detected correctly and the Shock Monitor will not work properly.

No.	Parameter	Data	Data when shipment	Contents
1	Parameter Lock	(1)Unlocked (2)Locked	(1)	Can change parameter setting Can not change parameter setting unless in an unlocked condition
2	Base Time	$0.1 \sim 25 s$	2.5	Changing the time for the rated of integrated power
3	Integration Time	X5,0.1 ~ 25s	5.0	Setting the time for power value integration
4	Motor Voltage	(1)200-230V (2)380-460V	(1)	Motor voltage 3 phase 200V class Motor voltage 3 phase 400V class
5	Motor kW	(1)0.1kW (11)15kW (2)0.2kW (12)18.5kW (3)0.4kW (13)22kW (4)0.75kW (14)30kW (5)1.5kW (15)37kW (6)2.2kW (16)45kW (7)3.7kW (17)55kW (8)5.5kW (18)75kW (9)7.5kW (19)90kW (10)11kW (20)110kW	0.75kW	
6	Start Time	0.1 ~ 20.0s	3.0	Setting the start time
_7	Process	1~8	1	Number of process
8	OUT1 Level	0~99%	0	Value of OUT1 integrated power lower limit
9	OUT2 Level	5~200%	80	Value of OUT2 integrated power upper limit
10	OUT3 Level	5~200%	100	Value of OUT3 instantaneous power upper limit
11	Shock Time OUT3	MIN 0.1 ~ 10.0s	1.0	Setting shock time OUT 3
12	Output Relay OUT3	(1)Self-Hold (2)Auto-Reset	(1)	Selecting the output operation mode (OUT3)
13	Response	(1)QUICK (2)NORMAL (3)SLOW	(2)	Number of moving average operations
14	Inhibit Time	IH 0.1 ~ 10.0s	н	Setting inhibit time
15	Auto Inhibit	(1)On (2)Off	(2)	Setting the auto inhibit function
16	LCD Backlight	(1)Always (2)2min	(1)	Setting the backlight illumination time

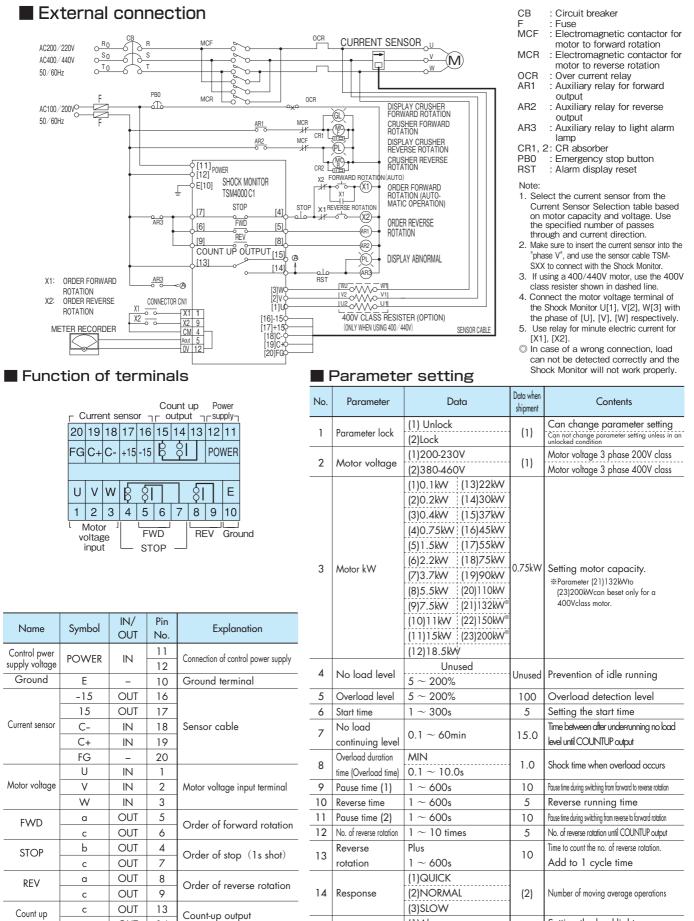
OUT

OUT

a

b

output


14

15

(1s shot)

External connection/ parameter settings/ terminal functions

6. Built-in forward/reverse sequencer type TSM4000C1......For general industrial machinery

15

LCD Backlight

(1)Always

(2)2min

Setting the backlight

illumination time

(1)

MEMO

MEMO		

Safety Guide and Warranty

WARNING Death or serious injury may result from product misuse due to not following the instructions.

- "Mechanical type Safety and Control devices"
- Begin inspection and maintenance after verifying that no load or rotational force is being applied to the equipment.
- Check the operation of the device periodically so that it can be sure to function properly when overload occurs.
- "Electrical type Safety and Control devices"
- When carrying out an operation test or making a periodic inspection, make sure to verify that it functions properly as a protection device. • Follow the instruction manual when carrying out megger testing because most electrical devices have certain requirements for megger
- testing.Check the operation of the device periodically so that it can be sure to function properly when overloaded occurs.

"Common"

- Comply with the 2-1-1 General Standard of "Ordinance on Labor Safety and Hygiene".
- When performing maintenance or inspections:
 - 1) Wear proper work clothes and protective equipment (safety devices, gloves, shoes, etc.). To avoid an accident, make sure to perform maintenance and inspections in an appropriate environment.
 - 2) Make sure the power is switched off, and the machine has stopped completely before carrying out maintenance and inspections. Take the necessary measures to ensure the power is not turned back on.
 - 3) Follow the instruction manual.
 - 4) Wire according to the technical standards of Electrical Installation and company regulations. Take note of the cautions in this manual which explain installation direction, clearance and environmental conditions. Make sure to ground the device to prevent electrical shock and to improve noise resistance.
- When using with lifting equipment, install a suitable protection device for safety purposes, otherwise an accident resulting in death, serious injury or damage to the equipment may occur due to a falling accident.

CAUTION Minor or moderate injury, as well as damage to the product may result from product misuse due to not following the instructions.

- "Mechanical type Safety and Control devices"
- The strength of the equipment should be designed to withstand the load or rotational force when the device is activated due to overload.
 Wear damage may occur depending on the number and frequency of activations. Following the manual, check the functions and operations periodically. If something is not functioning properly, contact the distributor for repair.
- "Electrical type Safety and Control devices'
- Consumable parts (tantalum electrolytic capacitors, relays, etc.) are built-in the products. Using the manual, periodically check the functions and operation of the device. If it is not functioning properly, contact the distributor for repair.
- \bullet Do not use the device in a corrosive gas environment. Sulphidizing gases (SO₂, H₂S) can especially corrode the copper and copper alloy used on PCBs and parts, and cause a malfunction.

"Common"

- Read the instruction manual carefully, and use the product properly. In case the instruction manual is not available, request one from the distributor where you purchased the product, or our sales office with the product name and model number.
- Deliver this instruction manual to the final customer who uses the Tsubaki Emerson product.

Warranty: Tsubaki Emerson Co.: hereinafter referred to as "Seller" Customer: hereinafter referred to as "Buyer" Goods sold or supplied by Seller to Buyer: hereinafter referred to as "Goods"

1. Warranty period without charge

Effective 18 months from the date of shipment or 12 months from the first use of Goods, including the installation of the Goods to the Buyer's equipment or machine - whichever comes first.

2. Warranty coverage

Should any damage or problem with the Goods arise within the warranty period, given that the Goods were operated and maintained according to the instructions provided in the manual, the Seller will repair and replace at no charge once the Goods are returned to the Seller.

This warranty does not include the following:

- 1) Any costs related to removal of Goods from the Buyer's equipment or machine to repair or replace parts.
- 2) Cost to transport Buyer's equipment or machines to the Buyer's repair shop.
- 3) Costs to reimburse any profit loss due to any repair or damage and consequential losses caused by the Buyer.

3. Warranty with charge

Seller will charge for any investigation and repair of Goods caused by:

- 1) Improper installation by failing to follow the instruction manual.
- 2) Insufficient maintenance or improper operation by the Buyer.
- Incorrect installation of the Goods to other equipment or machines.

- 4) Any modifications or alterations of Goods by the Buyer.
- 5) Any repair by engineers other than the Seller or those designated by the Seller.
- 6) Operation in an environment not specified in the manual
- 7) Force Majeure or forces beyond the Seller's control such as natural disasters and injustices inflicted by a third party.
- Secondary damage or problems incurred by the Buyer's equipment or machines.
- 9) Defective parts supplied or specified by the Buyer.
- 10) Incorrect wiring or parameter settings by the Buyer.
- 11) The end of life cycle of the Goods under normal usage.
- 12) Losses or damages not liable to the Seller.

4. Dispatch service

The service to dispatch a Seller's engineer to investigate, adjust or trial test the Seller's Goods is at the Buyer's expense.

5. Disclaimer

- 1) In our constant efforts to improve, Tsubaki Emerson may make changes to this document or the product described herein without notice.
- 2) Considerable effort has been made to ensure that the contents of this document are free from technical inaccuracies and errors. However, any such inaccuracies or errors reported will be gladly examined and amended as necessary.

The contents of this catalog are mainly to aid in product selection. Read the instruction manual thoroughly before using the product in order to use it properly.

TSUBAKIMOTO CHAIN CO.

1-3 Kannabidai 1-chome Kyotanabe, Kyoto 610-0380, Japan http://tsubakimoto.com/

Phone : +81-774-64-5023/4 Facsimile : +81-774-64-5212

Global Associated Partners:

NORTH and SOUTH AMERICA

U.S. TSUBAKI POWER TRANSMISSION, LLC 301 E. Marquardt Drive Wheeling, IL 60090-6497 U.S.A. Phone :+1-847-459-9500 Facsimile :+1-847-459-9515

EUROPE

TSUBAKIMOTO EUROPE B.V. Aventurijn 1200, 3316 LB Dordrecht The Netherlands Phone :+31-78-6204000 Facsimile :+31-78-6204001

ASIA and OCEANIA

TSUBAKIMOTO SINGAPORE PTE. LTD. 25 Gul Lane Jurong Singapore 629419 Phone :+65-6861-0422/3/4 Facsimile :+65-6861-7035

TAIWAN TSUBAKIMOTO CO. No. 33, Lane 17, Zihciang North Road Gueishan Township, Taoyuan County Taiwan Phone :+886-33-293827/8/9

Facsimile : +886-33-293065

TSUBAKI of CANADA LIMITED 1630 Drew Road Mississauga, Ontario, L5S 1J6 Canada Phone :+1-905-676-0400 Facsimile :+1-905-676-0904

TSUBAKIMOTO U.K. LTD. Osier Drive, Sherwood Park Annesley, Nottingham NG15 0DX U.K. Phone : +44-1623-688-700 Facsimile : +44-1623-688-789

TSUBAKI INDIA POWER TRANSMISSION PRIVATE LIMITED Chandrika Chambers No.4, 3rd Floor, Anthony Street, Royapettah, Chennai, Tamil Nadu 600014 India Phone :+91-44-42315251 Facsimile :+91-44-42315253

KOREA CONVEYOR IND. CO., LTD 72-5 Onsoo-Dong Kuro-Ku, Seoul Korea Phone : +82-2-2619-4711 Facsimile : +82-2-2619-0819 Jardim Paulista, CEP 01405-001, São Paulo – S.P. Brazil Phone : +55-11-3253-5656 Facsimile : +55-11-3253-3384

Rua Pamplona, 1018 - CJ. 73/74,

EQUIPAMENTOS INDUSTRIAIS LTDA.

TSUBAKI BRASIL

TSUBAKI DEUTSCHLAND GmbH

ASTO Park Oberpfaffenhofen Friendrichshafener Straße 1 D-82205 Gilching, Germany Phone : +49-8105-7307100 Facsimile : +49-8105-7307101

TSUBAKIMOTO (THAILAND) CO., LTD. 388 Exchange Tower, 19th Floor Unit 1902, Sukhumvit Road, Klongtoey, Bangkok 10110 Thailand Phone :+66-2-262-0667/8/9 (3 Lines)

Facsimile : +66-2-262-0670

TSUBAKI AUSTRALIA PTY. LTD. Unit E, 95-101 Silverwater Road Silverwater, N.S.W. 2128 Australia Phone : +61-2-9704-2500 Facsimile : +61-2-9704-2550

TSUBAKI EMERSON MACHINERY (SHANGHAI) CO., LTD. No.5 Building, No.1151 Xingxian Rd., North Jiading Industry Zone, Shanghai 201815, People's Republic of China Phone :+86-21-3953-8188 Facsimile :+86-21-6916-9308

Distributed by: